Lagos State University MAT 112 Calculus Past Paper PDF

Document Details

DaringNewton4566

Uploaded by DaringNewton4566

Lagos State University

2012

Lagos State University

Tags

calculus mathematics differential calculus integration

Summary

This document is a past paper for MAT 112 - Calculus from Lagos State University's 2011/2012 session. It includes a variety of calculus questions, covering topics such as derivatives, integrals, and applications of calculus.

Full Transcript

Lagos State University Faculty Of Science Department of Mathematics Rain Semester Examination :: 2011/2012 Se...

Lagos State University Faculty Of Science Department of Mathematics Rain Semester Examination :: 2011/2012 Session MAT 112 - Calculus Time Allowed: 1 12 Hours QUESTION TYPE 2 REPRODUCED BY BUNDAY TUTORIAL Instruction: Answer All questions. Shade Option E where none of options A,B,C,D is Correct. 1. The first derivative of cosm ψ with respect to ψ is (A) −m cosm−1 ψ sin ψ (B) m cosm−1 ψ sinm ψ (C) −m sinm−1 ψ cosm ψ (D) m sinm ψ 2. Given that the profit function is 2x2 − 8x, the minimum profit is (A) 8 (B) -2 (C) -8 (D) 4 d2 y 3. At maximum point of y(x), dx2 is (A) > 0 (B) < 0 (C) = 0 (D) = 1 4. Find y in terms of x if y 0 = 3x2 − 6x + 2 and y = 7 when x = 0 (A) y = x3 − 3x2 + 2x + 7 (B) y = 3x2 − 6x + 7 (C) y = 3x2 + 2x + 7 (D) y = x3 − 3x2 + 2x 5. The rate of change of the area of a circle w.r.t its radius is (A) Diameter (B) Circumference (C) Area×radius (D) 2×diameter 6. Define y as an explicit function of x when x + y + y 2 = x2 (A) y = x2 − x − y 2 (B) y = −x or y = x − 1 (C) y = 1 − x or y = −x (D) Not possible π π 7. The area between the curve y = (sin x + cos x)2 , the x-axis and the ordinates at x = 0 and x = 2 is (A) 2 +1 (B) π2 + 2 (C) π2 + 3 (D) π2 + 4 dy 8. If x = a(t sin t + cos t − 1) and y = a(sin t − t cos t), find dx (A) tan t (B) sec2 t (C) 1 − cos t (D) sin t + cos t dx (A) 21 arcsin 13 (3x − 2) (B) 13 arcsin 12 (2 − 3x) (C) 13 arcsin 21 (3x − 2) (D) 34 arcsin 34 x R 9. √12x−9x 2 10. If y = sec θ, which of the following is correct? (A) y 00 = y(2y 2 + 1) (B) y 00 + y = y(2y 2 + 1) (C) y 00 + y 0 + y = 2y 3 (D) y 00 = y(2y 2 − 1) 11. If y = θn , where n ∈ Z+ , which of the following is not correct? (A) θ2 y 00 − n2 y 0 + ny = 0 (B)θy 0 = ny (C) θ2 y 00 = n(n − 1)y (D) y + y 0 = nθn (n−1 + θ−1 ) 12. Integrate cos2 21 x w.r.t x (A) x 2 + 21 sin x (B) 2 cos 12 x sin 21 x (C) x + sin x (D) 1 2 + 21 sin x dy 2x+3y −2x−3y 3x+2y −3x+2y 13. Find dx if 3xy + x2 + y 2 = 5 (A) 3x+2y (B) 3x+2y (C) 2x+3y (D) 2x+3y dy 4t 4 t 14. If x = t3 + t and y = 2t2 , then dx is (A) 3t2 +1 (B) 3t+1 (C) t2 +1 (D) 2t5 + t3 15. Integration is also known as (A) Pseudo-differentiation (B) Contra-differentiation (C) Dual-differentiation (D) Anti-differentiation 16. Is it true that if y = (ω 2 − 1)n , then (ω 2 − 1)y 0 − 2nωy = 0 (A) Yes (B) No (C) I don’t know x−q  x−q  1 1 1 ln x−p 1 x−p   17. Integrate x2 +(p+q)x+pq w.r.t x (A) ln x−p (B) p−q ln x−p (C) q−p x−q (D) p−q ln x−q d ln(ln(ln x))dx] (A) ln1x (B) ln(ln x) (C) ln(ln(ln x)) (D) x ln 1 R 18. Evaluate dx [ x R d R R d2 19. Simplify dx dx2 (cos x) (A) Very difficult (B) Not impossible (C) − cos x (D) cos x d2 20. If y = (x + 4)(11x + 1)(3x + 2), find (A) 198x + 226 (B) 198 + 226x (C) 198x − 78 (D) 99x2 + 226 − 78 dx2 21. Differentiate y = (x2 + 4)−1 w.r.t x (A) 12 arctan x2 (B) (x22x (C) (x−2x 1  +4)2 2 +4)2 (D) arctan x2 +4 22. The rate of change of velocity with time is (A) speed (B) acceleration (C) displacement (D) momentum R5 23. Evaluate 2 15x2 dx (A) 625 (B) x3 (C) 585 (D) 5x3 − 2x 24. Integrate 112 w.r.t x (A) 4 (B) 0 (C) 112x (D) 211 R 50 25. Evaluate 10 (3x2 + 4x + 1)dx(A) 128840 (B) 124088 (C) 128480 (D) 128884 26. Which of these is not correct? (A) [ f (x)]dx = [ f (x)dx] (B) ff0(x) dx = ln f 0 (x) (C) x dx R P PR R R R R R (x) ln x = ln(ln x) (D) 2f (x)dx = f (x)dx + f (x)dx √ 27. If an integrand involves x2 − a2 , which of the following substitution is best suitable? (A) x = a sin θ (B) x = a sec θ (C) x = a tan θ (D) x = a cos θ 28. Find the maximum value of y = x3 − 6x2 + 9x (A) 1 (B) 2 (C) 3 (D) 4 R 1 dx √ √ 29. 0 √3−2x (A) 1 (B) -1 (C) 3 − 1 (D) 1 − 3 30. Integrate xe3x w.r.t x (A) 31 xe3x − 91 e3x (B) 3e3x + 1 (C) 3xe3x + e3x (D) 91 xe3x − 13 e3x 31. ln xdx (A) x1 (B) x − ln x (C) x ln x − x (D) x ln x − x1 R 32. Differentiate 4x2 sin x − 3x2 cos x (A) 4x2 cos x − 3x2 sin x (B) (3x2 + 8x) cos x + (4x2 − 6x) sin x (C) (3x2 − 8x) cos x + (4x2 + 6x) sin x (D) (3x2 + 8x) sin x + (4x2 − 6x) cos x 1.5 33. The integral (5x + 3)0.5 evaluates to (A) (5x+3) (B) 32 (5x + 3)−0.5 (C) 10 3 2 (5x + 3)0.5 (D) 15 (5x + 3)1.5 R 1.5 dx 1 1 34. If y = x2 + 1, then dy is (A) 2 (B) 2x (C) 2x (D) Not possible x sin x dy x+sin2 x+sin x cos x x+cos2 x+sin x cos x x−sin2 x−sin x cos x x+sin x+sin x cos x 35. Given that y = cos x+sin x , then dx is (A) 1+sin 2x (B) 1+sin 2x (C) (cos x+sin x)2 (D) (cos x+sin x)2 R 2√3 dx π 1 1 π π π π 36. 2 x2 +4 (A) 4 (B) 2 arctan 2 x (C) 3 − 4 (D) 4 − 3 √  d 1+√x √ 1 √ 1 √1 √ √1 √ 37. Evaluate dx 1− x (A) 2 x(1+ x)2 (B) (1+ x)2 (C) (1+ x)2 x √ (D) (1− x)2 x f (x+h)−f (x) 38. If f (x) is a function of x, which of these best define the derivative of f w.r.t x (A) f 0 (x) (B) lim h (C) h→1 lim f (x+h)−f h (x) (D) lim f (x+h)−f h (x) x→0 h→0 3+x+2x2 39. Evaluate lim 2 (A) 1 (B) 2 (C) 3 (D) ∞ x→∞ 1+x d2 y 40. If dx2 = 0 at a point x, then x is a point (A) Fusion (B) Inflexion (C) Minimum (D) Maximum dy 41. If y = 1508, then dx is (A) 1 (B) 5 (C) 0 (D) 8 42. The second derivative of a function is used to determine its (A) Turning point (B) Value when it is squared (C) Minimum or Maximum points (D) Limits x+x2 +3x3 43. Evaluate lim x (A) 0 (B) 1 (C) 2 (D) 3 x→0 44. The equation y = x3 (x − 4) has number of inflexion (A) 1 (B) 2 (C) 3 (D) 4 45. Integrate ex sin x w.r.t x (A) ∞ (B) ex + cos x (C) 21 ex (cos x − sin x) (D) 12 ex (sin x − cos x) 46. tan5 x sec2 xdx is (A) 2 sec7 x (B) 16 tan6 x (C) sec2 x + tan6 x (D) 61 tan4 x sec2 x R dy 47. Find dx if y = 2x (A) 2x ln 2 (B) x2 ln 2 (C) 2x ln x (D) 2x ln 2x 48. Differentiate sin2 (x2 + 1) (A) 4x cos2 (x2 + 1) (B) 2 cos(x2 + 1) (C) 4x sin(x2 + 1) cos(x2 + 1) (D) 2x sin2 (x2 + 1) cos(x2 + 1) sin x π 49. Evaluate limπ (A) (B) Not Possible (C) ∞ (D) 0 x→ 2 cos x 2 d 1−x2 1−x2 −2   50. Find dx arcsin 1+x2 (A) Not possible (B) 2(1 + x) (C) 1+x2 (D) 1+x2

Use Quizgecko on...
Browser
Browser