Chapter 12 Support for Object-Oriented Programming PDF
Document Details
Uploaded by UnmatchedMandolin
2018
Robert W. Sebesta
Tags
Summary
This document provides a summary of support for object-oriented programming in various programming languages, discussing concepts like inheritance, dynamic binding, and reflection.
Full Transcript
Chapter 12 Support for Object-Oriented Programming ISBN 0-321-49362-1 Chapter 12 Topics Introduction Object-Oriented Programming Design Issues for Object-Oriented Languages Support for Object-Oriented Programming in Smalltalk Support for Object-Oriented P...
Chapter 12 Support for Object-Oriented Programming ISBN 0-321-49362-1 Chapter 12 Topics Introduction Object-Oriented Programming Design Issues for Object-Oriented Languages Support for Object-Oriented Programming in Smalltalk Support for Object-Oriented Programming in C++ Support for Object-Oriented Programming in Java Support for Object-Oriented Programming in C# Support for Object-Oriented Programming in Ruby Implementation of Object-Oriented Constructs Reflection Copyright © 2018 Pearson. All rights reserved. 1-2 Introduction Many object-oriented programming (OOP) languages – Some support procedural and data-oriented programming (e.g., C++) – Some support functional program (e.g., CLOS) – Newer languages do not support other paradigms but use their imperative structures (e.g., Java and C#) – Some are pure OOP language (e.g., Smalltalk & Ruby) – Some functional languages support OOP, but they are not discussed in this chapter Copyright © 2018 Pearson. All rights reserved. 1-3 Object-Oriented Programming Three major language features: – Abstract data types (Chapter 11) – Inheritance Inheritance is the central theme in OOP and languages that support it – Polymorphism Copyright © 2018 Pearson. All rights reserved. 1-4 Inheritance Productivity increases can come from reuse – ADTs are difficult to reuse—always need changes – All ADTs are independent and at the same level Inheritance allows new classes defined in terms of existing ones, i.e., by allowing them to inherit common parts Inheritance addresses both of the above concerns--reuse ADTs after minor changes and define classes in a hierarchy Copyright © 2018 Pearson. All rights reserved. 1-5 Object-Oriented Concepts ADTs are usually called classes Class instances are called objects A class that inherits is a derived class or a subclass The class from which another class inherits is a parent class or superclass Subprograms that define operations on objects are called methods Copyright © 2018 Pearson. All rights reserved. 1-6 Object-Oriented Concepts (continued) Calls to methods are called messages The entire collection of methods of an object is called its message protocol or message interface Messages have two parts--a method name and the destination object In the simplest case, a class inherits all of the entities of its parent Copyright © 2018 Pearson. All rights reserved. 1-7 Object-Oriented Concepts (continued) Inheritance can be complicated by access controls to encapsulated entities – A class can hide entities from its subclasses – A class can hide entities from its clients – A class can also hide entities for its clients while allowing its subclasses to see them Besides inheriting methods as is, a class can modify an inherited method – The new one overrides the inherited one – The method in the parent is overriden Copyright © 2018 Pearson. All rights reserved. 1-8 Object-Oriented Concepts (continued) Three ways a class can differ from its parent: 1. The subclass can add variables and/or methods to those inherited from the parent 2. The subclass can modify the behavior of one or more of its inherited methods. 3. The parent class can define some of its variables or methods to have private access, which means they will not be visible in the subclass Copyright © 2018 Pearson. All rights reserved. 1-9 Object-Oriented Concepts (continued) There are two kinds of variables in a class: – Class variables - one/class – Instance variables - one/object There are two kinds of methods in a class: – Class methods – accept messages to the class – Instance methods – accept messages to objects Single vs. Multiple Inheritance One disadvantage of inheritance for reuse: – Creates interdependencies among classes that complicate maintenance Copyright © 2018 Pearson. All rights reserved. 1-10 Dynamic Binding A polymorphic variable can be defined in a class that is able to reference (or point to) objects of the class and objects of any of its descendants When a class hierarchy includes classes that override methods and such methods are called through a polymorphic variable, the binding to the correct method will be dynamic Allows software systems to be more easily extended during both development and maintenance Copyright © 2018 Pearson. All rights reserved. 1-11 Dynamic Binding Concepts An abstract method is one that does not include a definition (it only defines a protocol) An abstract class is one that includes at least one virtual method An abstract class cannot be instantiated Copyright © 2018 Pearson. All rights reserved. 1-12 Design Issues for OOP Languages The Exclusivity of Objects Are Subclasses Subtypes? Single and Multiple Inheritance Object Allocation and Deallocation Dynamic and Static Binding Nested Classes Initialization of Objects Copyright © 2018 Pearson. All rights reserved. 1-13 The Exclusivity of Objects Everything is an object – Advantage - elegance and purity – Disadvantage - slow operations on simple objects Add objects to a complete typing system – Advantage - fast operations on simple objects – Disadvantage - results in a confusing type system (two kinds of entities) Include an imperative-style typing system for primitives but make everything else objects – Advantage - fast operations on simple objects and a relatively small typing system – Disadvantage - still some confusion because of the two type systems Copyright © 2018 Pearson. All rights reserved. 1-14 Are Subclasses Subtypes? Does an “is-a” relationship hold between a parent class object and an object of the subclass? – If a derived class is-a parent class, then objects of the derived class must behave the same as the parent class object A derived class is a subtype if it has an is-a relationship with its parent class – Subclass can only add variables and methods and override inherited methods in “compatible” ways Subclasses inherit implementation; subtypes inherit interface and behavior Copyright © 2018 Pearson. All rights reserved. 1-15 Single and Multiple Inheritance Multiple inheritance allows a new class to inherit from two or more classes Disadvantages of multiple inheritance: – Language and implementation complexity (in part due to name collisions) – Potential inefficiency - dynamic binding costs more with multiple inheritance (but not much) Advantage: – Sometimes it is quite convenient and valuable Copyright © 2018 Pearson. All rights reserved. 1-16 Allocation and DeAllocation of Objects From where are objects allocated? – If they behave line the ADTs, they can be allocated from anywhere Allocated from the run-time stack Explicitly create on the heap (via new) – If they are all heap-dynamic, references can be uniform thru a pointer or reference variable Simplifies assignment - dereferencing can be implicit – If objects are stack dynamic, there is a problem with regard to subtypes – object slicing Is deallocation explicit or implicit? Copyright © 2018 Pearson. All rights reserved. 1-17 Dynamic and Static Binding Should all binding of messages to methods be dynamic? – If none are, you lose the advantages of dynamic binding – If all are, it is inefficient Maybe the design should allow the user to specify Copyright © 2018 Pearson. All rights reserved. 1-18 Nested Classes If a new class is needed by only one class, there is no reason to define so it can be seen by other classes – Can the new class be nested inside the class that uses it? – In some cases, the new class is nested inside a subprogram rather than directly in another class Other issues: – Which facilities of the nesting class should be visible to the nested class and vice versa Copyright © 2018 Pearson. All rights reserved. 1-19 Initialization of Objects Are objects initialized to values when they are created? – Implicit or explicit initialization How are parent class members initialized when a subclass object is created? Copyright © 2018 Pearson. All rights reserved. 1-20 Support for OOP in Smalltalk Smalltalk is a pure OOP language – Everything is an object – All objects have local memory – All computation is through objects sending messages to objects – None of the appearances of imperative languages – All objected are allocated from the heap – All deallocation is implicit - Smalltalk classes cannot be nested in other classes Copyright © 2018 Pearson. All rights reserved. 1-21 Support for OOP in Smalltalk (continued) Inheritance – A Smalltalk subclass inherits all of the instance variables, instance methods, and class methods of its superclass – All subclasses are subtypes (nothing can be hidden) – All inheritance is implementation inheritance – No multiple inheritance Copyright © 2018 Pearson. All rights reserved. 1-22 Support for OOP in Smalltalk (continued) Dynamic Binding – All binding of messages to methods is dynamic The process is to search the object to which the message is sent for the method; if not found, search the superclass, etc. up to the system class which has no superclass – The only type checking in Smalltalk is dynamic and the only type error occurs when a message is sent to an object that has no matching method Copyright © 2018 Pearson. All rights reserved. 1-23 Support for OOP in Smalltalk (continued) Evaluation of Smalltalk – The syntax of the language is simple and regular – Good example of power provided by a small language – Slow compared with conventional compiled imperative languages – Dynamic binding allows type errors to go undetected until run time – Introduced the graphical user interface – Greatest impact: advancement of OOP Copyright © 2018 Pearson. All rights reserved. 1-24 Support for OOP in C++ General Characteristics: – Evolved from C and SIMULA 67 – Among the most widely used OOP languages – Mixed typing system – Constructors and destructors – Elaborate access controls to class entities Copyright © 2018 Pearson. All rights reserved. 1-25 Support for OOP in C++ (continued) Inheritance – A class need not be the subclass of any class – Access controls for members are – Private (visible only in the class and friends) (disallows subclasses from being subtypes) – Public (visible in subclasses and clients) – Protected (visible in the class and in subclasses, but not clients) Copyright © 2018 Pearson. All rights reserved. 1-26 Support for OOP in C++ (continued) In addition, the subclassing process can be declared with access controls (private or public), which define potential changes in access by subclasses – Private derivation - inherited public and protected members are private in the subclasses – Public derivation public and protected members are also public and protected in subclasses Copyright © 2018 Pearson. All rights reserved. 1-27 Inheritance Example in C++ class base_class { private: int a; float x; protected: int b; float y; public: int c; float z; }; class subclass_1 : public base_class { … }; // In this one, b and y are protected and // c and z are public class subclass_2 : private base_class { … }; // In this one, b, y, c, and z are private, // and no derived class has access to any // member of base_class Copyright © 2018 Pearson. All rights reserved. 1-28 Reexportation in C++ A member that is not accessible in a subclass (because of private derivation) can be declared to be visible there using the scope resolution operator (::), e.g., class subclass_3 : private base_class { base_class :: c; … } Copyright © 2018 Pearson. All rights reserved. 1-29 Reexportation (continued) One motivation for using private derivation – A class provides members that must be visible, so they are defined to be public members; a derived class adds some new members, but does not want its clients to see the members of the parent class, even though they had to be public in the parent class definition Copyright © 2018 Pearson. All rights reserved. 1-30 Support for OOP in C++ (continued) Multiple inheritance is supported – If there are two inherited members with the same name, they can both be referenced using the scope resolution operator (::) class Thread {... } class Drawing {... } class DrawThread : public Thread, public Drawing { … } Copyright © 2018 Pearson. All rights reserved. 1-31 Support for OOP in C++ (continued) Dynamic Binding – A method can be defined to be virtual, which means that they can be called through polymorphic variables and dynamically bound to messages – A pure virtual function has no definition at all – A class that has at least one pure virtual function is an abstract class Copyright © 2018 Pearson. All rights reserved. 1-32 Support for OOP in C++ (continued) class Shape { Circle* circ = new Circle; Rectangle* rect = new Rectangle; public: Shape* ptr_shape; virtual void draw() = 0; ptr_shape = circ; // points to a Circle... ptr_shape ->draw(); // Dynamically }; // bound to draw in Circle class Circle : public Shape { rect->draw(); // Statically bound to public: // draw in Rectangle void draw() {... }... }; class Rectangle : public Shape { public: void draw() {... }... }; Copyright © 2018 Pearson. All rights reserved. 1-33 Support for OOP in C++ (continued) If objects are allocated from the stack, it is quite different Circle circ; // Allocates a Circle object from the stack Rectangle rect; // Allocates a Rectangle object from the stack rect = circ; // Copies the data member values from Circle object rect.draw(); // Calls the draw from Rectangle Copyright © 2018 Pearson. All rights reserved. 1-34 Support for OOP in C++ (continued) Evaluation – C++ provides extensive access controls (unlike Smalltalk) – C++ provides multiple inheritance – In C++, the programmer must decide at design time which methods will be statically bound and which must be dynamically bound Static binding is faster! – Smalltalk type checking is dynamic (flexible, but somewhat unsafe) – Because of interpretation and dynamic binding, Smalltalk is ~10 times slower than C++ Copyright © 2018 Pearson. All rights reserved. 1-35 Support for OOP in Java Because of its close relationship to C++, focus is on the differences from that language General Characteristics – All data are objects except the primitive types – All primitive types have wrapper classes that store one data value – All objects are heap-dynamic, are referenced through reference variables, and most are allocated with new – A finalize method is implicitly called when the garbage collector is about to reclaim the storage occupied by the object Copyright © 2018 Pearson. All rights reserved. 1-36 Support for OOP in Java (continued) Inheritance – Single inheritance supported only, but there is an abstract class category that provides some of the benefits of multiple inheritance (interface) – An interface can include only method declarations and named constants, e.g., public interface Comparable { public int comparedTo (T b); } – Methods can be final (cannot be overriden) - All subclasses are subtypes Copyright © 2018 Pearson. All rights reserved. 1-37 Support for OOP in Java (continued) Dynamic Binding – In Java, all messages are dynamically bound to methods, unless the method is final (i.e., it cannot be overriden, therefore dynamic binding serves no purpose) – Static binding is also used if the methods is static or private both of which disallow overriding Copyright © 2018 Pearson. All rights reserved. 1-38 Support for OOP in Java (continued) Nested Classes – All are hidden from all classes in their package, except for the nesting class – Nonstatic classes nested directly are called innerclasses An innerclass can access members of its nesting class A static nested class cannot access members of its nesting class – Nested classes can be anonymous – A local nested class is defined in a method of its nesting class No access specifier is used Copyright © 2018 Pearson. All rights reserved. 1-39 Support for OOP in Java (continued) Evaluation – Design decisions to support OOP are similar to C++ – No support for procedural programming – No parentless classes – Dynamic binding is used as “normal” way to bind method calls to method definitions – Uses interfaces to provide a simple form of support for multiple inheritance Copyright © 2018 Pearson. All rights reserved. 1-40 Support for OOP in C# General characteristics – Support for OOP similar to Java – Includes both classes and structs – Classes are similar to Java’s classes – structs are less powerful stack-dynamic constructs (e.g., no inheritance) Copyright © 2018 Pearson. All rights reserved. 1-41 Support for OOP in C# (continued) Inheritance – Uses the syntax of C++ for defining classes – A method inherited from parent class can be replaced in the derived class by marking its definition with new – The parent class version can still be called explicitly with the prefix base: base.Draw() - Subclasses are subtypes if no members of the parent class is private - Single inheritance only Copyright © 2018 Pearson. All rights reserved. 1-42 Support for OOP in C# Dynamic binding – To allow dynamic binding of method calls to methods: The base class method is marked virtual The corresponding methods in derived classes are marked override – Abstract methods are marked abstract and must be implemented in all subclasses – All C# classes are ultimately derived from a single root class, Object Copyright © 2018 Pearson. All rights reserved. 1-43 Support for OOP in C# (continued) Nested Classes – A C# class that is directly nested in a nesting class behaves like a Java static nested class – C# does not support nested classes that behave like the non-static classes of Java Copyright © 2018 Pearson. All rights reserved. 1-44 Support for OOP in C# Evaluation – C# is a relatively recently designed C-based OO language – The differences between C#’s and Java’s support for OOP are relatively minor Copyright © 2018 Pearson. All rights reserved. 1-45 Support for OOP in Ruby General Characteristics – Everything is an object – All computation is through message passing – Class definitions are executable, allowing secondary definitions to add members to existing definitions – Method definitions are also executable – All variables are type-less references to objects – Access control is different for data and methods It is private for all data and cannot be changed Methods can be either public, private, or protected Method access is checked at runtime – Getters and setters can be defined by shortcuts Copyright © 2018 Pearson. All rights reserved. 1-46 Support for OOP in Ruby (continued) Inheritance – Access control to inherited methods can be different than in the parent class – Subclasses are not necessarily subtypes Dynamic Binding – All variables are typeless and polymorphic Evaluation – Does not support abstract classes – Does not fully support multiple inheritance – Access controls are weaker than those of other languages that support OOP Copyright © 2018 Pearson. All rights reserved. 1-47 Implementing OO Constructs Two interesting and challenging parts – Storage structures for instance variables – Dynamic binding of messages to methods Copyright © 2018 Pearson. All rights reserved. 1-48 Instance Data Storage Class instance records (CIRs) store the state of an object – Static (built at compile time) If a class has a parent, the subclass instance variables are added to the parent CIR Because CIR is static, access to all instance variables is done as it is in records – Efficient Copyright © 2018 Pearson. All rights reserved. 1-49 Dynamic Binding of Methods Calls Methods in a class that are statically bound need not be involved in the CIR; methods that will be dynamically bound must have entries in the CIR – Calls to dynamically bound methods can be connected to the corresponding code thru a pointer in the CIR – The storage structure is sometimes called virtual method tables (vtable) – Method calls can be represented as offsets from the beginning of the vtable Copyright © 2018 Pearson. All rights reserved. 1-50 Reflection A programming language that supports reflection allows its programs to have runtime access to their types and structure and to be able to dynamically modify their behavior The types and structure of a program are called metadata The process of a program examining its metadata is called introspection Interceding in the execution of a program is called intercession Copyright © 2018 Pearson. All rights reserved. 1-51 Reflection (continued) Uses of reflection for software tools: - Class browsers need to enumerate the classes of a program - Visual IDEs use type information to assist the developer in building type correct code - Debuggers need to examine private fields and methods of classes - Test systems need to know all of the methods of a class Copyright © 2018 Pearson. All rights reserved. 1-52 Reflection in Java Limited support from java.lang.Class Java runtime instantiates an instance of Class for each object in the program The getClass method of Class returns the Class object of an object float[] totals = new float; Class fltlist = totals.getClass(); Class stg = ″hello″.getClass(); If there is no object, use class field Class stg = String.class; Copyright © 2018 Pearson. All rights reserved. 1-53 Reflection in Java (continued) Class has four useful methods: getMethod searches for a specific public method of a class getMethods returns an array of all public methods of a class getDeclaredMethod searches for a specific method of a class getDeclaredMethods returns an array of all methods of a class Copyright © 2018 Pearson. All rights reserved. 1-54 Reflection in Java (continued) The Method class defines the invoke method, which is used to execute the method found by getMethod Copyright © 2018 Pearson. All rights reserved. 1-55 Reflection in C# In the.NET languages the compiler places the intermediate code in an assembly, along with metadata about the program System.Type is the namespace for reflection getType is used instead of getClass typeof operator is used instead of.class field System.Reflection.Emit namespace provides the ability to create intermediate code and put it in an assembly (Java does not provide this capability) Copyright © 2018 Pearson. All rights reserved. 1-56 Downsides of Reflection Performance costs Exposes private fields and methods Voids the advantages of early type checking Some reflection code may not run under a security manager, making code nonportable Copyright © 2018 Pearson. All rights reserved. 1-57 Summary OO programming involves three fundamental concepts: ADTs, inheritance, dynamic binding Major design issues: exclusivity of objects, subclasses and subtypes, type checking and polymorphism, single and multiple inheritance, dynamic binding, explicit and implicit de-allocation of objects, and nested classes Smalltalk is a pure OOL C++ has two distinct type systems (hybrid) Java is not a hybrid language like C++; it supports only OOP C# is based on C++ and Java Ruby is a relatively recent pure OOP language; provides some new ideas in support for OOP Implementing OOP involves some new data structures Reflection is part of Java and C#, as well as most dynamically types languages Copyright © 2018 Pearson. All rights reserved. 1-58