Summary

This physics revision booklet covers refraction and lenses, providing definitions, types of lenses, questions, images and equations for Grade 10 students.

Full Transcript

Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Convex and Concave Lenses Lens: piece of transparen...

Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Convex and Concave Lenses Lens: piece of transparent material that is used to focus light and form an image Types of Lenses Convex lens: lens that is thicker at Concave lens: lens that is thinner in the center than at the edges the middle than at the edges Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Write the type of each lenses 1- ………………………….. 2- …………………………… 3- …………………………. 4- ……………………………… 5- …………………………. 6- …………………………. Convex lens Ray 1 is parallel to the principal axis.It refracts and passes through F on the other side of the lens Ray 2 passes through F on its way to the lens. After refraction, its path is parallel to the principal axis Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Concave lens Ray 1 approaches the lens parallel to the principal axis. It leaves the lens along a line that extends back through the focal point. Ray 2 approaches the lens as if it is going to pass through the focal point on the opposite side, and leaves the lens parallel to the principal axis. Properties of images in Convex and Concave Lenses Properties of image …………………………………….. ………………………………………………. ………………………………………………. ‫‪Physics 2023-2024‬‬ ‫‪Refraction and Lenses‬‬ ‫‪:‬‬ ‫‪CH5‬‬ ‫‪/ 2024‬‬ ‫‪/‬‬ ‫‪) Date :‬‬ ‫( ‪Name:………….. Grade 10‬‬ ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫‪Properties of image‬‬ ‫‪……………………………………..‬‬ ‫‪……………………………………………….‬‬ ‫‪……………………………………………….‬‬ ‫‪Properties of image‬‬ ‫‪……………………………………..‬‬ ‫‪……………………………………………….‬‬ ‫‪……………………………………………….‬‬ ‫‪Physics 2023-2024‬‬ ‫‪Refraction and Lenses‬‬ ‫‪:‬‬ ‫‪CH5‬‬ ‫‪/ 2024‬‬ ‫‪/‬‬ ‫‪) Date :‬‬ ‫( ‪Name:………….. Grade 10‬‬ ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫‪Physics 2023-2024‬‬ ‫‪Refraction and Lenses‬‬ ‫‪:‬‬ ‫‪CH5‬‬ ‫‪/ 2024‬‬ ‫‪/‬‬ ‫‪) Date :‬‬ ‫( ‪Name:………….. Grade 10‬‬ ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫‪Properties‬‬ ‫‪of image‬‬ ‫‪Lens‬‬ ‫‪:‬‬ Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / 2024 / CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Equations Magnification Example : An object is placed 32.0 cm from a convex lens that has a focal length of 8.0 cm. a. Where is the image? b. If the object is 3.0 cm high, how tall is the image? c. What is the orientation of the image? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Q1: A 2.25-cm-tall object is 8.5 cm to the left of a convex lens of 5.5-cm focal length. Find the image position and height. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q2. An object near a convex lens produces a 1.8-cm-tall real image that is 10.4 cm from the lens and inverted. If the focal length of the lens is 6.8 cm, what are the object position and height? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q3. An object is placed to the left of a convex lens with a 25-mm focal length so that its image is the same size as the object. What are the image and object positions? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q4. Use a scale ray diagram to find the image position of an object that is 30 cm to the left of a convex lens with a 10-cm focal length. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Q5. Calculate the image position and height of a 2.0-cm-tall object located 25 cm from a convex lens with a focal length of 5.0 cm. What is the orientation of the image? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q5 : A newspaper is held 6.0 cm from a convex lens of 20.0-cm focal length. Find the image position of the newsprint image. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q6. A magnifying glass has a focal length of 12.0 cm. A coin, 2.0 cm in diameter, is placed 3.4 cm from the lens. Locate the image of the coin. What is the diameter of the image? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q7. A convex lens with a focal length of 22.0 cm is used to view a 15.0-cm-long pencil located 10.0 cm away. Find the height and orientation of the image. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Q8. A stamp collector wants to magnify a stamp by 4.0 when the stamp is 3.5 cm from the lens. What focal length is needed for the lens? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q9. A magnifier with a focal length of 30 cm is used to view a 1-cm-tall object. Use ray tracing to determine the location and size of the image when the magnifier is positioned 10 cm from the object ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Convex and Concave Lenses Lens: piece of transparent material that is used to focus light and form an image Types of Lenses Convex lens: lens that is thicker at Concave lens: lens that is thinner in the center than at the edges the middle than at the edges Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Convex lens Ray 1 is parallel to the principal axis.It refracts and passes through F on the other side of the lens Ray 2 passes through F on its way to the lens. After refraction, its path is parallel to the principal axis Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Concave lens Ray 1 approaches the lens parallel to the principal axis. It leaves the lens along a line that extends back through the focal point. Ray 2 approaches the lens as if it is going to pass through the focal point on the opposite side, and leaves the lens parallel to the principal axis. Properties of images in Convex and Concave Lenses ‫‪Physics 2023-2024‬‬ ‫‪Refraction and Lenses‬‬ ‫‪:‬‬ ‫‪CH5‬‬ ‫‪/ 2024‬‬ ‫‪/‬‬ ‫‪) Date :‬‬ ‫( ‪Name:………….. Grade 10‬‬ ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫‪Properties of image‬‬ ‫‪……………………………………..‬‬ ‫‪……………………………………………….‬‬ ‫‪……………………………………………….‬‬ ‫‪Properties of image‬‬ ‫‪……………………………………..‬‬ ‫‪……………………………………………….‬‬ ‫‪……………………………………………….‬‬ ‫‪Physics 2023-2024‬‬ ‫‪Refraction and Lenses‬‬ ‫‪:‬‬ ‫‪CH5‬‬ ‫‪/ 2024‬‬ ‫‪/‬‬ ‫‪) Date :‬‬ ‫( ‪Name:………….. Grade 10‬‬ ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ ‫‪Properties‬‬ ‫‪of image‬‬ ‫‪Lens‬‬ ‫‪:‬‬ Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / 2024 / CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Equations Magnification Example : An object is placed 32.0 cm from a convex lens that has a focal length of 8.0 cm. a. Where is the image? b. If the object is 3.0 cm high, how tall is the image? c. What is the orientation of the image? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Q1: A 2.25-cm-tall object is 8.5 cm to the left of a convex lens of 5.5-cm focal length. Find the image position and height. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q2. An object near a convex lens produces a 1.8-cm-tall real image that is 10.4 cm from the lens and inverted. If the focal length of the lens is 6.8 cm, what are the object position and height? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q3. An object is placed to the left of a convex lens with a 25-mm focal length so that its image is the same size as the object. What are the image and object positions? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q4. Use a scale ray diagram to find the image position of an object that is 30 cm to the left of a convex lens with a 10-cm focal length. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Q5. Calculate the image position and height of a 2.0-cm-tall object located 25 cm from a convex lens with a focal length of 5.0 cm. What is the orientation of the image? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q5 : A newspaper is held 6.0 cm from a convex lens of 20.0-cm focal length. Find the image position of the newsprint image. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q6. A magnifying glass has a focal length of 12.0 cm. A coin, 2.0 cm in diameter, is placed 3.4 cm from the lens. Locate the image of the coin. What is the diameter of the image? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q7. A convex lens with a focal length of 22.0 cm is used to view a 15.0-cm-long pencil located 10.0 cm away. Find the height and orientation of the image. ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Physics 2023-2024 Name:………….. Grade 10 ( ) Date : / / 2024 CH5 : Refraction and Lenses ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Q8. A stamp collector wants to magnify a stamp by 4.0 when the stamp is 3.5 cm from the lens. What focal length is needed for the lens? ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. Q9. A magnifier with a focal length of 30 cm is used to view a 1-cm-tall object. Use ray tracing to determine the location and size of the image when the magnifier is positioned 10 cm from the object ……………………………………………………………………………………….. ……………………………………………………………………………………….. ……………………………………………………………………………………….. on Interference part 1 1 Chapter 8 – Interference and Diffraction Incoherent and Coherent Light 1- What led scientists to believe that light has wave properties? They discovered that light could be made to interfere, which results from the superposition of waves 2- Define the incoherent light? It is light whose waves are not in phase 3- Define the coherent light? It is Light made up of waves of the same wavelength that are in phase with each other 4- How we can create a coherent light?  It can be created by a single point source.  It can be created by multiple point sources when all point sources are in phase. This type of coherent light is produced by a laser. 2 Chapter 8 – Interference and Diffraction Interference of Coherent Light 1- What is the prerequisite for a clear interference of light waves? The light waves should be from coherent sources. 2- What was Thomas Young experiment? In his experiment, monochromatic light from a small source (single point source). was passed through two closely spaced slits and produced an interference pattern. 3- Define interference fringes The pattern of bright and dark band  Note1: There are two types of waves interference (constructive – destructive) Constructive Destructive When two waves meet in such a When two waves meet in such a way way that their crests line up that the crest of one wave meets the together. trough of another.  Note2: In the interference pattern:  The Bright band represents an area where a constructive interference occurs.  The dark area represents an area where a destructive interference occurs. 3 Chapter 8 – Interference and Diffraction Exercises:  Rely on the following figure to fill in the table. E H C G A F B I D The areas of constructive interference The areas of destructive interference  Rely on the following figure to fill in the table. At point “p” Case a What is the type of interference? Answer: What is the type of the band? Answer: Case b What is the type of interference? Answer: What is the type of the band? Answer: 4 Chapter 8 – Interference and Diffraction 4- Describe the pattern that Thomas Young gets in his experiment (Double-Slit Interference) https://www.youtube.com/watch?v=9D8cPrEAGyc (0:00-1:08 min)  A bright central band of the given color on the screen  Other bright bands of near-equal spacing and near-equal width on either side  The intensity of the bright bands decreases the farther the band is from the central band  Between the bright bands are dark areas where destructive interference occurs.  Note: The positions of the constructive and destructive interference bands depend on the light's wavelength 5- Describe the changes in the interference pattern when we use a green light instead of a red one.  The distance between the bright fringes decreases.  The width of the bright fringes decreases. 5 Chapter 8 – Interference and Diffraction 6- Describe the pattern that Thomas Young gets in his experiment (Double-Slit Interference) when he uses a white light.  A bright central band of white color on the screen.  Colored spectra on either side of the central band. 7- Use the figure to answer the following questions C E A D B a. What is the useful of each of the single slit and the double slit barriers in the double slit experiment? The single slit barrier The double slit barrier b. Name the following areas? The area A B,C D,E The name 6 Chapter 8 – Interference and Diffraction A 8- In the figure, the distance “1” represent the path difference between the two waves coming from the two slits when they met at point A.  What is the value of distance “1” if the two waves meet at point P0? ………………………………………………………………… ………………………………………………………………… …………………………………………………………………  If the two waves met at point A, complete the following table Path difference Distance 1 value 1λ 2λ λ/2 3λ/2 Type of the band (bright- dark) The order of the band 𝒎 = 𝟏, 𝟐, 𝟑, …. 9- What is the equation of the wavelength from the Double-Slit Experiment? 𝑚𝜆 = 𝑥𝑚. 𝑑 𝐿 N The symbol The physical quantity 1 𝑚 The order of the fringe 2 𝑥𝑚 The Distance from the central bright band to the bright band 3 𝜆 The wavelength of the light 4 𝑑 The distance between the slits 5 𝐿 The distance to the screen Note: all the quantities are measured in meter except 𝑚 which is dimensionless quantity 7 Chapter 8 – Interference and Diffraction Applications 1- A double-slit experiment is performed to measure the wavelength of red light. The slits are 0.0190 mm apart. A screen is placed 0.600 m away, and the first-order bright band is found to be 21.1 mm from the central bright band. What is the wavelength of the red light? 2- Violet light falls on two slits separated by 1.90×10−5 m. A first-order bright band appears 13.2 mm from the central bright band on a screen 0.600 m from the slits. What is λ? 3- Yellow-orange light from a sodium lamp of wavelength 596 nm is aimed at two slits that are separated by 1.90×10−5 m. What is the distance from the central band to the first-order yellow band if the screen is 0.600 m from the slits? 8 Chapter 8 – Interference and Diffraction 4- In a double-slit investigation, physics students use a laser with λ = 632.8 nm. A student places the screen 1.000 m from the slits and finds the first-order bright band 65.5 mm from the central line. What is the slit separation? 5- Yellow-orange light with a wavelength of 596 nm passes through two slits that are separated by 2.25×10−5 m and makes an interference pattern on a screen. If the distance from the central line to the firstorder yellow band is 2.00×10−2 m, how far is the screen from the slits? 6- A flat screen is placed 4.200 m from a pair of slits that are illuminated by a beam of monochromatic light. On the screen, the separation between the central bright band and the second-order bright band is 0.082 m. The distance between the slits is 5.3×10−5 m. Determine the wavelength of the light Part 1 end 9

Use Quizgecko on...
Browser
Browser