Physics Equations (PDF)
Document Details
Uploaded by Deleted User
Tags
Summary
This document provides a collection of physics equations, covering topics such as kinematics, rotation, moments of inertia, work and energy, and linear momentum. Formulas and definitions for various physical quantities and concepts are presented, along with examples of different physical objects and their moments of inertia.
Full Transcript
# 121 Equations **Kinematics:** * **r** is generic position vector * vavg = total distance / total time * v = dr/dt * aavg = Δv/Δt * a = dv/dt = d²r/dt² * **r**f = **r**i + **v**iΔt + 1/2 **a**(Δt)² * **v**f = **v**i + **a**Δt * **v**f² = **v**i² + 2**a**Δ**r** * **r** = √(x² + y²), θ = tan⁻¹(y/x)...
# 121 Equations **Kinematics:** * **r** is generic position vector * vavg = total distance / total time * v = dr/dt * aavg = Δv/Δt * a = dv/dt = d²r/dt² * **r**f = **r**i + **v**iΔt + 1/2 **a**(Δt)² * **v**f = **v**i + **a**Δt * **v**f² = **v**i² + 2**a**Δ**r** * **r** = √(x² + y²), θ = tan⁻¹(y/x) * s = rθ * T = 2πr / 2π * ω = dθ/dt * v = ωr * aτ = rα = ω²r * aτ = rα * a = aτ + a * α = dw/dt **Rotation:** * τ = rF sin θ * **τ** = **r** x **F** * Σ **τ** = I**α** * L = Iw = **r** x **p** * Σ **τ** = dL/dt * Fg = G Mm/r² * T² = (4π²r³/GM) * PEg = -G Mm/r **Moments of Inertia:** | Object | Axis | Moment of Inertia (I) | |---|---|---| | Hoop | Cylinder axis | MR² | | Annular cylinder (or ring) | Cylinder axis | M/2 (R₁² + R₂²) | | Solid cylinder (or disk) | Cylinder axis | MR²/2 | | Solid cylinder (or disk) | Central diameter | MR²/4 + ML²/12 | | Thin rod | Axis through center perpendicular to length | ML²/12 | | Thin rod | Axis through one end perpendicular to length | ML²/3 | | Solid sphere | Any diameter | 2MR²/5 | | Thin spherical shell | Any diameter | 2MR²/3 | | Hoop | Any diameter | MR²/2 | | Slab | Axis through center, perpendicular | M(a² + b²)/12 | **Work and Energy:** * Wnc = ΔKE + ΔPE * F = -dU/dr * P = dW/dt = F . **v** * XCM = (M1X1 + M2X2 + M3X3 + ...)/(m1 + m2 + m3 + ...) * I = Σ miri² * I = ∫r²dm * I = ICM + MD² * KErot = 1/2 Iw² **linear Momentum:** * Σ F = m ȧ * Fg = mg * Ff = μFN * p = mv̇ * p̄f = p̄i * Ī = F̄avg∆t = ∆p̄ * Σ F = dp/dt = mv̇ * KE = 1/2 mv² * PEg = mgh * PEs = 1/2 k (Δx)² * Fs = -kΔx * Vf1 = (m1 - m2)/(m1 + m2) Vi1 * Vf2 = (2m1/ (m1 + m2) Vi1 * Wnet = ΔKE * W = F . Δr = Fr cos θ **Other:** * Vsphere = 4/3πr³