Núcleo Celular y Ciclo Celular PDF

Document Details

CoolBarium

Uploaded by CoolBarium

Universidad Mayor de San Simón

Lizz Natali Villarroel F.

Tags

biología celular núcleo celular transporte nuclear biología

Summary

Este documento describe el núcleo celular, sus funciones, el transporte de moléculas nucleares, y las teorías sobre su origen. Se centra en los procesos celulares, las proteínas implicadas y las conexiones con otros procesos como la replicación del ADN y el ciclo celular.

Full Transcript

Otros cuerpos subnucleares Además del nucléolo, el núcleo contiene una cierta cantidad de cuerpos delimitados no membranosos.  Entre estos se encuentran los cuerpos de Cajal (cuerpos enrollados)...

Otros cuerpos subnucleares Además del nucléolo, el núcleo contiene una cierta cantidad de cuerpos delimitados no membranosos.  Entre estos se encuentran los cuerpos de Cajal (cuerpos enrollados), los llamados "Géminis de los cuerpos enrollados" (Gemini of coiled bodies, en inglés),  La denominada Asociación Cariosómica Polimórfica Interfásica (PIKA, por sus siglas en inglés de Polymorphic Interphase Karyosomal Association). cuerpos enrollados  Los Cuerpos de la Leucemia Promielocítica (PMLs, por sus siglas en inglés de promyelocytic leukaemia),  Los "paraspeckles" y los "specles de ayuste" o "motas de empalme" ("splicing speckles" en inglés).  Aunque se sabe poco sobre el número de estos dominios subnucleares, son significativos en cuanto que muestran que el nucleoplasma no es una mezcla uniforme, sino que más bien contiene subdominios funcionales organizados. Función  La principal función del núcleo celular es controlar la expresión genética y mediar en la replicación del ADN en el ciclo celular. El núcleo proporciona un emplazamiento para la transcripción en el citoplasma, permitiendo niveles de regulación que no están disponibles en procariotas. Tiene diferentes funciones:  En el núcleo se guardan los genes en forma de cromosomas (durante la mitosis) o cromatina (durante la interfase)  Transporta los factores de regulación a través de los poros nucleares  Produce ácido ribonucleico mensajero (ARNm) que codifica proteínas.  Produce pre-ribosomas (ARNr) en el nucléolo. Transporte nuclear  El transporte de moléculas hacia el exterior e interior del núcleo, puede llevarse a cabo gracias a que en todas las células eucariotas la envoltura nuclear está perforada por poros nucleares, constituidos por grandes complejos multiproteicos. Transporte nuclear  La entrada y salida de grandes moléculas del núcleo está estrictamente controlada por los complejos de poros nucleares. Aunque las pequeñas moléculas pueden entrar en el núcleo sin regulación, las macromoléculas como el ARN y las proteínas requieren asociarse a carioferinas llamadas importinas para entrar en el núcleo, y exportinas para salir. importinas y exportinas Transporte nuclear  Las proteínas cargadas que deben ser translocadas desde el citoplasma al núcleo contienen cortas secuencias de aminoácidos conocidas como señales de localización nuclear que están unidas a las importinas, mientras que las transportadas desde el núcleo al citoplasma poseen señales de exportación nuclear unidas a las exportinas. La capacidad de las importinas y las exportinas para transportar su carga está regulada por GTPasas, enzimas que hidrolizan GTP liberando energía. GTPasas Transporte nuclear  La GTPasa clave en el transporte nuclear es Ran, que puede unir o bien GTP o bien GDP (guanosina difosfato), dependiendo de si está localizada en el núcleo o en el citoplasma. Mientras que las importinas dependen de Ran-GTP para disociarse de su carga, las exportinas necesitan Ran-GTP para unirse a su carga. GDP (guanosina difosfato) Transporte nuclear Las macromoléculas, como el ARN y las proteínas son transportadas activamente a través de la membrana nuclear en un proceso conocido como "ciclo de transporte nuclear Ran-GTP. Señales de localización necesarias para el transporte  Las señales de localización nuclear hacen que el flujo de proteínas del citosol al núcleo sea selectivo. Estas señales únicamente están presentes en las proteínas nucleares, consisten en una secuencia corta que va entre 4 y 8 aminoácidos. Cuando hay importación nuclear esta señal se denomina señal de localización nuclear (NLS), y cuando hay exportación nuclear se denomina señal de exportación nuclear (NES). Señales de localización necesarias para el transporte  Existen dos tipos de NLS: las monopartitas y las bipartitas. Las NLS monopartitas están formadas por un solo grupo de residuos básicos y las NLS bipartitas están formadas por dos grupos de residuos de lisinas y argininas. Este tipo de señales son reconocidas específicamente por la Importina α y las proteínas que las contienen son transportadas al núcleo por el heterodímero Importina α/Importina β1. Por otro lado, las NES son secuencias cortas de aminoácidos hidrofóbicos, principalmente leucinas. Señales de localización necesarias para el transporte  A estas señales de localización nuclear, que se localizan en los poros nucleares, se unen una o más nucleoporinas, que son proteínas citosólicas, que contienen la N-acetilglucosamina, un azúcar simple que ayuda a su identificación mediante el uso de lectinas y anticuerpos específicos. Las nucleoporinas colaboran dirigiendo a la proteína nuclear hacia el centro del complejo de poro, donde se une a las fibrillas que están extendidas hacia el citosol y que se proyectan a partir del anillo del complejo. Estas fibrillas guían a las proteínas nucleares hacia el centro del complejo de poro, donde es transportada activamente hacia el interior nuclear mediante un proceso que requiere la hidrólisis de GTP. Carioferinas  Son proteínas mediadoras del transporte a través del complejo del poro nuclear. Su clasificación depende de la dirección del transporte para el que fueron inicialmente descritas, se les ha clasificado como importinas y exportinas. Carioferinas  Las importinas, en su mayoría, pertenecen a la superfamilia de las importinas β y se encargan de regular el transporte de la mayor parte de las proteínas y de diferentes especies de ARN, excepto ARNm. Exportación nuclear  Sucede en condiciones de alta concentración de Ran-GTP, reconoce una proteína que contiene una NES (señal de exportación nuclear) junto a una molécula de Ran-GTP. El complejo es entonces capaz de interaccionar con el complejo del poro nuclear y atravesarlo hasta el citoplasma. Una vez allí, otras proteínas Ran promueven la actividad GTPasa de Ran, que hidroliza el GTP y pasa a convertirse en Ran-GDP. La hidrólisis produce un cambio conformacional en Ran, produciéndose el desensamblaje de la exportina-carga, quedando la carga libre en el citoplasma. Las moléculas de Ran-GDP y exportina se reciclan para un nuevo ciclo de transporte. Exportación nuclear  Las proteínas especializadas de exportación sirven para la traslocación de ARNm maduro y ARNt al citoplasma después de que la modificación postranscripcional se completa. Este mecanismo de control de calidad es importante debido al papel central de esas moléculas en la traducción de proteínas. La expresión inadecuada de una proteína debido a una escisión de exones incompleta o la incorporación impropia de aminoácidos podría tener consecuencias negativas para la célula. Por ello, el ARN no modificado por completo que alcanza el citoplasma es degradado en lugar de ser utilizado en la traducción. Importación nuclear  La importación nuclear depende de que la importina se una a su carga en el citoplasma y lo transporte a través del poro nuclear al núcleo. Las importinas interaccionan en el citoplasma, en condiciones de baja concentración de RanGTP, con la proteína con una NLS (señal de localización nuclear), y entra al interior del núcleo mediante asociación con proteínas del complejo del poro nuclear. Una vez en el nucleoplasma, la presencia de altos niveles de RanGTP causa la destrucción del complejo importina-carga, liberándose la carga en el interior del núcleo. La Importina α es transportada de nuevo al citoplasma mediante su interacción reiniciándose de nuevo el proceso. Regulación del transporte entre el núcleo y el citosol  El transporte entre el citosol y el núcleo puede regularse inactivando la señal de localización nuclear de las proteínas nucleares por fosforilación o cuando dichas proteínas se unan a proteínas citosólicas inhibidoras que las retienen en el citosol mediante interacciones con el citoesqueleto o con organelos específicos, o enmascaran sus señales de localización nuclear. Sin embargo, cuando la célula recibe el estímulo necesario, la proteína nuclear es liberada y es transportada hacia el núcleo. Regulación del transporte entre el núcleo y el citosol  De una forma similar, puede estar controlada la exportación de ARN desde el núcleo. Como en la importación activa hacia el núcleo, la exportación requiere una señal. Es probable que las señales de exportación nuclear se localicen en las subunidades proteicas de dichos complejos, y que se activen después de ensamblarse correctamente con los componentes del ARN. Regulación del transporte entre el núcleo y el citosol  Por todo esto puede concluirse que el mecanismo de transporte de macromoléculas a través del poro nuclear, es muy distinto al mecanismo que ocurre a través de las membranas de otros organelos, pues el transporte nuclear no ocurre por un transportador proteico que atraviesa una o más bicapas lipídicas sino mediante un poro con un canal acuoso regulado. También, mientras que las proteínas nucleares son transportadas a través de los poros manteniendo su conformación completamente plegada, en el transporte a otros organelos, las proteínas tienen que desplegarse. Regulación del transporte entre el núcleo y el citosol  Por último, las señales de localización nuclear no se eliminan después del transporte hacia el núcleo, pues las proteínas nucleares han de ser importadas al núcleo varias veces, después de cada división celular. Pero, cuando una proteína ha sido importada a cualquier otro organelo membranoso, el péptido señal es a menudo eliminado después de la translocación proteica.  https://www.youtube.com/watch?v=98q7146_5_k  https://www.youtube.com/watch?v=BXp2cIwi0Lk Ensamblaje y desensamblaje  Durante su periodo de vida un núcleo puede desensamblarse, o bien en el transcurso de la división celular, o como consecuencia de la apoptosis, una forma regulada de muerte celular. Durante estos acontecimientos, los componentes estructurales del núcleo la envoltura y la lámina son sistemáticamente degradados. Ensamblaje y desensamblaje  Durante el ciclo celular la célula se divide para formar dos células. Para que este proceso sea posible, cada una de las nuevas células hija debe adquirir un juego completo de genes, un proceso que requiere la replicación de los cromosomas, así como la segregación en juegos separados. Esto se produce cuando los cromosomas ya replicados, las cromátides hijas, se unen a los microtúbulos, los cuales a su vez se unen a diferentes centrosomas. Ensamblaje y desensamblaje  Las cromátides hija pueden ser fraccionadas hacia localizaciones separadas en la célula. No obstante, en muchas células el centrosoma se localiza en el citoplasma, fuera del núcleo, por lo que los microtúbulos serían incapaces de unirse a las cromátides en presencia de la envoltura nuclear. Por tanto, en los estadios tempranos del ciclo celular, comenzando en profase y hasta casi la prometafase, se desmantela la membrana nuclear. Ensamblaje y desensamblaje  De forma similar, durante el mismo periodo se desensambla la lámina nuclear, un proceso que está regulado por la fosforilación de las láminas. Hacia el final del ciclo celular se reforma la membrana nuclear, y en torno al mismo tiempo, la lámina nuclear se reensambla desfosforilando las proteínas laminares. Ensamblaje y desensamblaje  La apoptosis es un proceso controlado en el que los componentes estructurales de la célula son destruidos, lo que produce la muerte de la célula. Los cambios asociados con la apóptosis afectan directamente al núcleo y a sus contenidos, por ejemplo en la condensación de la cromatina y la desintegración de la envoltura nuclear y la lámina. La destrucción de las redes de lámina está controlada por proteasas apoptóticas especializadas denominadas caspasas, que desintegran la lámina nuclear y de ese modo degradan la integridad estructural del núcleo. La desintegración de la lámina nuclear se utiliza en ocasiones en los laboratorios como indicador de la actividad de la caspasa en ensayos de actividad apoptótica temprana. Ensamblaje y desensamblaje  Imagen de un neumocito de tritón teñido con colorantes fluorescentes durante la metafase. El huso mitótico puede verse teñido en verde claro, los cromosomas de azul y la membrana celular de rojo. Todos los cromosomas excepto uno se encuentran en la placa metafásica. Ensamblaje y desensamblaje  Las células que expresan láminas resistentes a las caspasas son deficientes en los cambios nucleares relacionados con la apoptosis, lo que sugiere que las láminas desempeñan un papel importante en el inicio de los eventos que conducen a la degradación apoptótica del núcleo. La inhibición del propio ensamblaje de la lámina nuclear es por sí misma un inductor de la apoptosis., Ensamblaje y desensamblaje  La envoltura nuclear actúa como una barrera que evita que virus de ADN o ARN penetren en el núcleo. Algunos virus precisan acceder a proteínas dentro del núcleo para replicarse o ensamblarse. Los virus de ADN, como el herpesvirus se replican y ensamblan en el núcleo celular, y salen brotando a través de la membrana nuclear interna. Este proceso se acompaña del desensamblaje de la lámina nuclear en la cara nuclear de la membrana interna. Células anucleadas y polinucleadas  Aunque la mayor parte de las células tienen un único núcleo, algunos tipos celulares carecen de él, en tanto que otros poseen múltiples núcleos. Esto puede ser un proceso normal, como es en el caso de la maduración de los eritrocitos, o bien el resultado de una división celular defectuosa. Células anucleadas y polinucleadas  Las células anucleadas carecen de núcleo, y por lo mismo son incapaces de dividirse para producir células hijas. El caso mejor conocido de célula anucleada es el eritrocito de mamífero, que también carece de otros orgánulos como mitocondrias, y sirven en principio como vehículos de transporte de oxígeno desde los pulmones a los tejidos. Células anucleadas y polinucleadas  Los eritrocitos maduran gracias a la eritropoyesis en la médula ósea, donde pierden su núcleo, orgánulos y ribosomas. El núcleo es expulsado durante el proceso de diferenciación de eritroblasto a reticulocito, el cual es el precursor inmediato del eritrocito maduro. mutágenos puede inducir la liberación de algunos eritrocitos inmaduros "micronucleados" al torrente sanguíneo. También pueden aparecer células anucleadas a partir de una división celular defectuosa en la que una célula hija carece de núcleo, mientras que la otra posee dos. Células anucleadas y polinucleadas  Las células polinucleadas contienen múltiples núcleos. La mayor parte de los protozoos de la clase Acantharea, y algunos hongos que forman micorrizas, tienen células polinucleadas de forma natural. Otros ejemplos serían los parásitos intestinales del género Giardia, que posee dos núcleos en cada célula. En los seres humanos, el músculo esquelético posee células, llamadas miocitos, que se convierten en polinucleadas durante su desarrollo. protozoos de la clase Acantharea Células anucleadas y polinucleadas  La disposición resultante de los núcleos en la región periférica de la célula permite un espacio intracelular máximo para las miofibrillas. Las células multinucleadas también pueden ser anormales en humanos. Por ejemplo, las que surgen de la fusión de monocitos y macrófagos, conocidas como células multinucleadas gigantes, pueden ser observadas en ocasiones acompañando a la inflamación, y también están implicadas en la formación de tumores. Células anucleadas y polinucleadas  Al ser la mejor característica que define la célula eucariota, el origen evolutivo del núcleo ha sido objeto de mucha especulación. Entre las teorías propuestas, se pueden considerar cuatro como las principales, aunque ninguna de ellas ha encontrado un amplio apoyo. Teorías endosimbioticas  La teoría conocida como "modelo sintrófico" propone que una relación simbiótica entre arqueas y bacterias creó la primera célula eucariota nucleada. Se establece la hipótesis de que la simbiosis tuvo lugar cuando una arquea antigua similar a los actuales metanógenos fueron invadidos y parasitados por bacterias similares a las actuales myxobacteria, formando finalmente el núcleo primitivo. myxobacteria Teorías endosimbioticas  Esta teoría es análoga a teoría aceptada del origen de las mitocondrias y cloroplastos eucariotas, de los que se piensa que se han desarrollado por una relación endosimbionte similar entre protoeucariotas y bacterias aerobias. El origen arqueano del núcleo está apoyado por la circunstancia de que tanto arqueas como eucariotas tienen genes similares en ciertas proteínas, incluyendo las histonas. Teorías endosimbioticas  Al observar que las myxobacterias son móviles, pueden formar complejos multicelulares y poseen proteínas G similares a las de eucariotas, también se puede aceptar un origen bacteriano de la célula eucariota. Una propuesta similar establece que una célula similar a la eucariota, el cronocito, apareció en primer lugar, y posteriormente fagocitó arqueas y bacterias para dar lugar al núcleo y a la célula eucariota. cronocito Teorías endosimbioticas  Un modelo más controvertido, conocido como eucariogénesis viral afirma que muchos rasgos de la célula eucariota como la presencia de un núcleo que se continúa con la membrana surgieron por la infección de un antepasado procariota por un gran virus de ADN (posiblemente de un Virus nucleocitoplasmáticos de ADN de gran tamaño). Esto está sugerido sobre la base de similitudes entre eucariotas y virus como las hebras lineales de ADN, el procesamiento "caping" del extremo 5' del ARNm y la fuerte unión a proteínas del ADN (haciendo a las histonas análogas de la envoltura vírica). Teorías endosimbioticas  Una versión de esta propuesta sugiere que el núcleo evolucionó concertadamente con la fagocitosis para dar lugar a un depredador celular primitivo. Otra variante propone que los eucariotas se originaron de arqueas primitivas infectadas por poxvirus, basándose en la similitud de las modernas ADN polimerasas entre estos y los eucariotas. Se ha sugerido que la cuestión no resuelta de la evolución de la sexualidad pudo estar relacionada con la hipótesis de la eucariogénesis viral. Teorías no endosimbioticas  Este modelo propone que las células protoeucariotas evolucionaron a partir de bacterias sin que se diera un estadio simbionte. Este modelo se basa en la existencia de una bacteria moderna perteneciente al filo de las planctomycetes que poseen una estructura nuclear con poros primitivos y otras estructuras compartimentalizadas por membrana. Teorías no endosimbioticas  Finalmente, una propuesta muy reciente sugiere que las variantes tradicionales de las teorías endosimbiontes son insuficientes para explicar el origen del núcleo eucariota. Este modelo, denominado la hipótesis de la exomembrana, sugiere que el núcleo se originó en lugar de ello a partir de una célula ancestral original que desarrolló una segunda membrana celular exterior. La membrana interior que encerraba la célula original se convirtió entonces en la membrana nuclear evolucionando para desarrollar estructuras de poro cada vez más elaboradas para el paso de componentes celulares sintetizados internamente, como las subunidades ribosómicas.

Use Quizgecko on...
Browser
Browser