MTS 102 Elementary Mathematics II Revision Questions PDF

Summary

This document contains revision questions for elementary mathematics. It covers topics like limits, derivatives, and integration. The questions are suitable for secondary school level students.

Full Transcript

NOT FOR SALE MTS 102 ELEMENTARY MATHEMATICS II REVISION QUESTIONS BY COMR. AJELE IFEKITAN FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 1 : Evaluate the limitlimx→−∞x2−5t−92×4+3×3 A. 4 B. 0 C. 2 D....

NOT FOR SALE MTS 102 ELEMENTARY MATHEMATICS II REVISION QUESTIONS BY COMR. AJELE IFEKITAN FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 1 : Evaluate the limitlimx→−∞x2−5t−92×4+3×3 A. 4 B. 0 C. 2 D. 1 Answer to question 1 is A. 4 Question 2 : Evaluate the limitlimx→∞6e4x−e−2x8e4x−e2x+3e−x A.35 B.14 C.34 D.12 Answer to question 2 is C. 3/4 Question 3 : Evaluate the limitlimh→02(−3+h)2−18h A. 6 B. 14 C. 12 D. 8 Answer to question 3 is C. 12 Question 4 : Find the derivative f(x)=2×2−16x+35 by using first principle A.x+16 B.2x−8 C.3x−5 D.4x−16 Answer to question 4 is D.4x−16 Question 5 : Find the derivative f(x)=2×2−16x+35 by using first principle A.3x−5 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE B.4x−16 C.x+16 D.2x−8 Answer to question 5 is B.4x−16 Question 6 : Evaluate the limitlimt→4t−√(3+4)4−t A.−58 B.−38 C.34 D.−18 Answer to question 6 is B. -3/8 Question 7 : Differentiate y=3√(x2)(2x−x2) with respect to x A.y=5×233+4×533 B.y=5×233−4×533 C.y=10×233−8×533 D.y=10×233+8×533 Answer to question 5 is B.y=5×233−4×533 Question 8 : Evaluate the limitlimt→4t−√(3+4)4−t A.34 B.−18 C.−38 D.−58 Answer to question 8 is C. -3/8 Question 9 : Given y(x)=x4−4×3+3×2−5x, evaluated4ydx4 A. 22 B. 42 C. 30 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE D. 24 Answer to question 9 is D. 24 Question 10 : Differentiate with respect to x:f(x)=(ax3+bx) A.ax2+b B.3a−b C.3ax2+b D.3×2+1 Answer to question 10 is C.3ax2+b Question 11 : Evaluate the limitlimx→∞2×4−x2+8x−5×4+7 A.13 B.34 C.12 D.23 Answer to question 10 is C. 1/2 Question 12 : Differentiate y=3√(x2)(2x−x2) with respect to x A.y=5×233−4×533 B.y=5×233+4×533 C.y=10×233−8×533 D.y=10×233+8×533 Answer to question 12 is B.y=5×233+4×533 Question 13 : Given2x5+x2−5t2, find dydx by using the first principle A.6t2+10t−3 B. c−t−2+8t−3 C.t2+5t−3 D.6t+7t−3 Answer to question 12 is A.6t2+10t−3 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 14 : Evaluate the limitlimh→02(−3+h)2−18h A. 8 B. 14 C. 12 D. 6 Answer to question 12 is C. 12 Question 15 : Evaluate the limitlimx→∞6e4x−e−2x8e4x−e2x+3e−x A.35 B.34 C.12 D.14 Answer to question 15 is C. 1/2 Question 16 : Giveny(x)=x4−4×3+3×2−5x, evaluated4ydx4 A. 24 B. 22 C. 42 D. 30 Answer to question 16 is A. 24 Question 17 : Given2x5+x2−5t22x5+x2−5t2, finddydx by using the first principle A.6t+7t−3 B.6t2+10t−3 C.t2+5t−3 D. c−t−2+8t−3 Answer to question 17 is B.6t2+10t−3 Question 18 : Differentiate with respect to x:f(x)=(ax3+bx) A.ax2+b FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE B.3×2+1 C.3ax2+b D.3a−b Answer to question 18 C.3ax2+b Question 19 : Evaluate the limitlimx→∞2×4−x2+8x−5×4+7 A.34 B.23 C.13 D.12 Answer to question 18 D. 1/2 Question 20 : Evaluate the limitlimx→−∞x2−5t−92×4+3×3 A. 4 B. 0 C. 1 D. 2 Answer to question 20 A. 4 IFEKITAN CARES...Information is light, I chose to carry it FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 1 : Integrate ∫(x3+3×2+2x+4) A.x42−x3+x2+4x+c B.6×4−3×2+c C.x44+x3+x2+4x+c D.3×44+2×3+x+c Question 2 : Given f(x) =(7×4−5×3) , evaluate df(x)dx A.28×3−15×2 B.2×3−15×2 C.28×2−15×2 D.7×4−5×3 Answer to question 2 is A. A.28×3−15×2 Question 3 : Evaluate ∫e4xdx A.ex+c B.13ex+c C.14e4x+c D.3ex3+c Answer to question 3. Is A. ex+c Question 4 : Find ∫sec3xtanxdx A.cos3x2+c B.sin2x+c C.cos2x+c D.sec3x3+c Answer to question 4. Is A. ex Question 5 : Find the volume of a sphere generated by a semicircley=√(r2−x2) FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE revolving around the x-axis A.4πr32 B.4πr33 C.−π−r32 D.πr34 Question 6 : Find the integral with respect to x ∫cosxsinxdx A.cos2x2+c B.sinx C.sin2x2+c D.sin2x+c Question 7 : Find the ∫tan3xsec3xdx A.sec2x+1 B.cot2x+1 C.sec2x D.tan2x+1 Question 8 : Integrate with respect to x : ∫3−1x√7+x2dx A.4−2√2 B.2√2 C.√2 D.4√2 Question 9 : Evaluate ∫3ex+5cos(x)−10sec2(x)dx A.2ex−x−10tanx+c B.3e2+5sinx−10tanx+c C.3ex+cosx−10tanx+c D.3ex+5sinx−10secx+c Question 10 : Evaluate∫x2e3xdx FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE A.e3x3(x2−2×3+29)+c B.ex3(x2+2×3−25)+c C.e2x3(x3−x4+29)+c D.−e3x3(x2+2×3−29)+c Question 11 : Evaluate∫x+1×2−3x+2dx A.3ln(x−2)−2ln(x−1)+c B.3ln(x−2)+2ln(x+1)+c C.3ln(x+2)−2ln(x+1)+c D.−3ln(x−2)−2ln(x−1)+c Question 12 : Integrate with respect to x : ∫2−1×2(x3+4)2dx A. 6 B.12 C. 12 D.512 Question 13 : Evaluate∫2−1y2+y−2dy A.716 B.316 C.516 D.1716 Question 14 : Evaluate∫(3x−2)6dx A.(3x+2)72+c B.(3x−2)721+c C.(3x+2)721+c D.3(3x−2)72+c Question 15 : Evalute ∫x2(3−10×3)dx A.115(3−20×3)5)+c FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE B.110(1−10×2)5)+c C.1150(3−10×3)5)+c D.1100(3−2×3)5)+c Question 16 : Find∫xcosax2dx with respect to x A.12asinax2+c B.sec2x+1 C.sin2x+c D.cos3x+c Question 17 : Determine∫x2+1(x+2)3 A.ln(x+2)+4x+2−52(x+3)2+c B.ln(x−2)+4x−2−52(x+3)2+c C.ln(x+2)−4x+2−52(x+3)2+c D.−ln(x+2)−4x+2−52(x+3)2+c Question 18 : Integrate with respect to x : ∫41x+1√xdx A. -20 B.203 C.320 D. 20 Question 19 : Evaluate∫cos(6x+4)dx A.sin(6x+4)6+c B.tan(6x+4)6+c C.cos(6x+4)6+c D.sec(6x+4)6+c Question 20 : Evaluate∫xe6xdx A.x6e6x−1136e6x+c B.x3e6x+116e6x+c FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE C.x6e6x+1136e6x+c D.−x6e6x+1136e6x+c IFEKITAN CARES...Information is light, I chose to carry it FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 1 : Evaluate the limitlimx→−∞x2−5t−92×4+3×3 A. 4 B. 0 C. 2 D. 1 Answer to question 1 is A. 4 Question 2 : Evaluate the limitlimx→∞6e4x−e−2x8e4x−e2x+3e−x A.35 B.14 C.34 D.12 Answer to question 2 is C. 3/4 Question 3 : Evaluate the limitlimh→02(−3+h)2−18h A. 6 B. 14 C. 12 D. 8 Answer to question 3 is C. 12 Question 4 : Find the derivative f(x)=2×2−16x+35 by using first principle A.x+16 B.2x−8 C.3x−5 D.4x−16 Answer to question 4 is D.4x−16 Question 5 : Find the derivative f(x)=2×2−16x+35 by using first principle A.3x−5 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE B.4x−16 C.x+16 D.2x−8 Answer to question 5 is B.4x−16 Question 6 : Evaluate the limitlimt→4t−√(3+4)4−t A.−58 B.−38 C.34 D.−18 Answer to question 6 is B. -3/8 Question 7 : Differentiate y=3√(x2)(2x−x2) with respect to x A.y=5×233+4×533 B.y=5×233−4×533 C.y=10×233−8×533 D.y=10×233+8×533 Answer to question 5 is B.y=5×233−4×533 Question 8 : Evaluate the limitlimt→4t−√(3+4)4−t A.34 B.−18 C.−38 D.−58 Answer to question 8 is C. -3/8 Question 9 : Given y(x)=x4−4×3+3×2−5x, evaluated4ydx4 A. 22 B. 42 C. 30 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE D. 24 Answer to question 9 is D. 24 Question 10 : Differentiate with respect to x:f(x)=(ax3+bx) A.ax2+b B.3a−b C.3ax2+b D.3×2+1 Answer to question 10 is C.3ax2+b Question 11 : Evaluate the limitlimx→∞2×4−x2+8x−5×4+7 A.13 B.34 C.12 D.23 Answer to question 10 is C. 1/2 Question 12 : Differentiate y=3√(x2)(2x−x2) with respect to x A.y=5×233−4×533 B.y=5×233+4×533 C.y=10×233−8×533 D.y=10×233+8×533 Answer to question 12 is B.y=5×233+4×533 Question 13 : Given2x5+x2−5t2, find dydx by using the first principle A.6t2+10t−3 B. c−t−2+8t−3 C.t2+5t−3 D.6t+7t−3 Answer to question 12 is A.6t2+10t−3 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 14 : Evaluate the limitlimh→02(−3+h)2−18h A. 8 B. 14 C. 12 D. 6 Answer to question 12 is C. 12 Question 15 : Evaluate the limitlimx→∞6e4x−e−2x8e4x−e2x+3e−x A.35 B.34 C.12 D.14 Answer to question 15 is C. 1/2 Question 16 : Giveny(x)=x4−4×3+3×2−5x, evaluated4ydx4 A. 24 B. 22 C. 42 D. 30 Answer to question 16 is A. 24 Question 17 : Given2x5+x2−5t22x5+x2−5t2, finddydx by using the first principle A.6t+7t−3 B.6t2+10t−3 C.t2+5t−3 D. c−t−2+8t−3 Answer to question 17 is B.6t2+10t−3 Question 18 : Differentiate with respect to x:f(x)=(ax3+bx) A.ax2+b FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE B.3×2+1 C.3ax2+b D.3a−b Answer to question 18 C.3ax2+b Question 19 : Evaluate the limitlimx→∞2×4−x2+8x−5×4+7 A.34 B.23 C.13 D.12 Answer to question 18 D. 1/2 Question 20 : Evaluate the limitlimx→−∞x2−5t−92×4+3×3 A. 4 B. 0 C. 1 D. 2 Answer to question 20 A. 4 IFEKITAN CARES...Information is light, I chose to carry it FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE Question 1 : Given 2×5+x2−5t2 , finddydxby using the first principle A.6t2+10t−3 B.t2+5t−3 C. c−t−2+8t−3 D.6t+7t−3 Answer to question 1 is A.6t2+10t−3 Question 2 : Find the derivative f(x)=2×2−16x+35 by using first principle A.x+16 B.3x−5 C.2x−8 D.4x−16 Answer to question 2 is D.4x−16 Question 3 : Given y(x)=x4−4×3+3×2−5x , evaluated4ydx4 A. 30 B. 22 C. 42 D. 24 Answer to question 3 is D. 24 Question 4 : Evaluate the limit limx→∞6e4x−e−2x8e4x−e2x+3e−x A.34 B.14 C.12 D.35 Answer to question 4 is A. 3/4 Question 5 : Differentiate y=3√(x2)(2x−x2) with respect to x A.y=5×233−4×533 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE B.y=10×233+8×533 C.y=5×233+4×533 D.y=10×233−8×533 Answer to question 5 is C.y=5×233+4×533 Question 6 : Evaluate the limit limh→02(−3+h)2−18h A. 12 B. 6 C. 14 D. 8 Answer to question 6 is A. 12 Question 7 : Evaluate the limit limt→4t−√(3+4)4−t A.−18 B.−58 C.−38 D.34 Answer to question 7 is B. -5/8 Question 8 : Differentiate with respect to x: f(x)=(ax3+bx) A.3a−b B.ax2+b C.3ax2+b D.3×2+1 Answer to question 8 is C.3ax2+b Question 9 : Evaluate the limit limx→−∞x2−5t−92×4+3×3 A. 4 B. 1 C. 2 FOR REVISION PURPOSE ONLY, IFEKITAN CARES NOT FOR SALE D. 0 Answer to question 9 is A. 4 Question 10 : Evaluate the limit limx→∞2×4−x2+8x−5×4+7 B.13 C.12 D.34 Answer to question 10 is C. 12 IFEKITAN CARES...Information is light, I chose to carry it IFEKITAN CARES...Information is light, I chose to carry it IFEKITAN CARES...Information is light, I chose to carry it IFEKITAN CARES...Information is light, I chose to carry it FOR REVISION PURPOSE ONLY, IFEKITAN CARES

Use Quizgecko on...
Browser
Browser