Strains (Rigorous Version) PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document covers the concept of strains, focusing on normal and shear strains, and their relationships to deformation. It provides mathematical equations and diagrams to illustrate the principles.
Full Transcript
Strains (Rigorous Version) Strain: a measure of deformation – Normal strain: change in length of a line segment – Shear strain: change in angle between two perpendicular line segments Displacement of P = (u1, u2, u3) Displacement of Q & R ∂u1 ∂u1 u1Q =u1 +...
Strains (Rigorous Version) Strain: a measure of deformation – Normal strain: change in length of a line segment – Shear strain: change in angle between two perpendicular line segments Displacement of P = (u1, u2, u3) Displacement of Q & R ∂u1 ∂u1 u1Q =u1 + ∆x1 u1R =u1 + ∆x2 ∂x1 ∂x2 R' ∂u2 ∂u2 u2Q =u2 + ∆x1 u2R =u2 + ∆x2 ∂x1 ∂x2 Q' ∂u3 ∂u3 R P'(x1+u1, x2+u2, x3+u3) u3Q =u3 + ∆x1 R u3 =u3 + ∆x2 ∆x2 ∂x1 ∂x2 x 2 ∆x1 P(x1,x2,x3) Q x1 x3 Displacement Field Coordinates of P, Q, and R before and after deformation P : (x1 , x2 , x3 ) Q : (x1 + ∆x1 , x2 , x3 ) R : (x1 , x1 + ∆x2 , x3 ) P′ : (x1 + u1P , x2 + u2P , x3 + u3P ) = (x1 + u1 , x2 + u2 , x3 + u3 ) Q′ : (x1 + ∆x1 + u1Q , x2 + u2Q , x3 + u3Q ) ∂u1 ∂u ∂u = (x1 + ∆x1 + u1 + ∆x1 , x2 + u2 + 2 ∆x1 , x3 + u3 + 3 ∆x1 ) ∂x1 ∂x1 ∂x1 R′ : (x1 + u1R , x2 + ∆x2 + u2R , x3 + u3R ) ∂u1 ∂u ∂u = (x1 + u1 + ∆x2 , x2 + ∆x2 + u2 + 2 ∆x2 , x3 + u3 + 3 ∆x2 ) ∂x2 ∂x2 ∂x2 Length of the line segment P'Q' ( ) +( ) +( ) 2 2 2 P′Q′ = x1P′ − x1Q′ x2P′ − x2Q′ x3P′ − x3Q′ Deformation Field Length of the line segment P'Q' 2 2 2 ∂u ∂u ∂u ∆x1 1 + 1 + 2 + 3 P′Q′ = ∂x1 ∂x1 ∂x1 2 1/2 2 2 ∂u1 ∂u1 ∂u2 ∂u3 = ∆x1 1 + 2 + + + ∂x1 ∂x1 ∂x1 ∂x1 ∂u1 1 ∂u1 2 1 ∂u2 2 2 1 ∂u3 ∂u1 ≈ ∆x1 1 + + + + ≈ ∆x 1 + ∂x1 2 ∂x1 2 ∂x1 2 ∂x1 ∂x 1 Linear Nonlinear Ignore H.O.T. when displacement gradients are small Linear normal strain P′Q′ − PQ ∂u1 ε11 = PQ ∂x1 ∂u2 ∂u3 =ε22 , =ε33 ∂x2 ∂x3 Deformation Field Shear strain 𝛾𝛾𝑥𝑥𝑥𝑥 – change in angle between two lines originally parallel to x– and y–axes x2Q′ − x2QP’ ∂u2 x1R′ − x1RP’ ∂u1 =θ1 = =θ2 = ∆x1 ∂x1 ∆x2 ∂x2 ∂u1 ∂u2 γ12 = θ1 + θ2 = + ∂x2 ∂x1 ∂u2 ∂u3 γ23 = + Engineering shear strain ∂x3 ∂x2 ∂u3 ∂u1 γ13= + ∂x1 ∂x3 Different notations 1 ∂u1 ∂u2 1 ∂ui ∂uj = ε12 + 2 ∂x2 ∂x1 = εij + 2 ∂xj ∂xi 1 ∂u2 ∂u3 = ε23 + 2 ∂x3 ∂x2 ε= ij 1 (u + uj,i ) 2 i,j 1 ∂u3 ∂u1 = ε13 + 2 ∂x1 ∂x3 =ε sym(∇u)