Artificial Intelligence PDF
Document Details
Uploaded by NiceQuantum
Technical University of Mombasa
Tags
Related
Summary
This document provides an introduction to artificial intelligence (AI). It explores the definition of AI, different approaches, and the historical context of the field. The text includes discussions of AI problems and tasks.
Full Transcript
MODULE 1 INTRODUCTION TO AI UNIT 1 WHAT IS ARTIFICIAL INTELLIGENT (AI)? CONTENTS 1.0 Introduction 2.0 Objectives 3.0 Main Content 3.1 Definition of AI 3.1.1 What is AI? 3.1.2 Typical AI problem 3.1.3 Practical Impact of AI...
MODULE 1 INTRODUCTION TO AI UNIT 1 WHAT IS ARTIFICIAL INTELLIGENT (AI)? CONTENTS 1.0 Introduction 2.0 Objectives 3.0 Main Content 3.1 Definition of AI 3.1.1 What is AI? 3.1.2 Typical AI problem 3.1.3 Practical Impact of AI 3.1.4 Approaches to AI 3.1.5 Limits of AI Today 3.2 AI History 4.0 Conclusion 5.0 Summary 6.0 Tutor-Marked Assignment 7.0 References/Further Reading 1.0 INTRODUCTION This unit introduces you to Artificial Intelligence and the different faculties involve in it. It also examines different ways of approaching AI. 2.0 OBJECTIVES At the end of this unit, you should be able to: 1. state the definition of Artificial Intelligence 2. list the different faculties involved with intelligent behaviour 3. explain the different ways of approaching AI 4. look at some example systems that use AI 5. Describe the history of AI. 1 CCS 4302 ARTIFICIAL INTELLIGENCE 3.0 MAIN CONTENT 3.1 Definition of AI What is AI? Artificial Intelligence is a branch of Science which deals with helping machines find solutions to complex problems in a more human-like fashion. This generally involves borrowing characteristics from human intelligence, and applying them as algorithms in a computer friendly way. A more or less flexible or efficient approach can be taken depending on the requirements established, which influences how artificial the intelligent behaviour appears. AI is generally associated with Computer Science, but it has many important links with other fields such as Mathematics, Psychology, Cognition, Biology and Philosophy, among many others. Our ability to combine knowledge from all these fields will ultimately benefit our progress in the quest of creating an intelligent artificial being It is also concerned with the design of intelligence in an artificial device. The term was coined by McCarthy in 1956. There are two ideas in the definition. 1. Intelligence 2. Artificial device What is intelligence? - Is it that which characterize humans? Or is there an absolute standard of judgment? - Accordingly there are two possibilities: - A system with intelligence is expected to behave as intelligently as a human - A system with intelligence is expected to behave in the best possible manner - Secondly what type of behaviour are we talking about? - Are we looking at the thought process or reasoning ability of the system? - Or are we only interested in the final manifestations of the system in terms of its actions? Given this scenario different interpretations have been used by different researchers as defining the scope and view of Artificial Intelligence. 2 CCS 4302 ARTIFICIAL INTELLIGENCE 1. One view is that artificial intelligence is about designing systems that are as intelligent as humans. This view involves trying to understand human thought and an effort to build machines that emulate the human thought process. This view is the cognitive science approach to AI. 2. The second approach is best embodied by the concept of the Turing Test. Turing held that in future computers can be programmed to acquire abilities rivalling human intelligence. As part of his argument Turing put forward the idea of an 'imitation game', in which a human being and a computer would be interrogated under conditions where the interrogator would not know which was which, the communication being entirely by textual messages. Turing argued that if the interrogator could not distinguish them by questioning, then it would be unreasonable not to call the computer intelligent. Turing's 'imitation game' is now usually called 'the Turing test' for intelligence. Figure 1: Turing Test Turing Test Consider the following setting. There are two rooms, A and B. One of the rooms contains a computer. The other contains a human. The interrogator is outside and does not know which one is a computer. He can ask questions through a teletype and receives answers from both A and B. 3 CCS 4302 ARTIFICIAL INTELLIGENCE The interrogator needs to identify whether A or B are humans. To pass the Turing test, the machine has to fool the interrogator into believing that it is human. For more details on the Turing test visit the site http://cogsci.ucsd.edu/~asaygin/tt/ttest.html 3. Logic and laws of thought deals with studies of ideal or rational thought process and inference. The emphasis in this case is on the inferencing mechanism, and its properties. That is how the system arrives at a conclusion, or the reasoning behind its selection of actions is very important in this point of view. The soundness and completeness of the inference mechanisms are important here. 4. The fourth view of AI is that it is the study of rational agents. This view deals with building machines that act rationally. The focus is on how the system acts and performs, and not so much on the reasoning process. A rational agent is one that acts rationally, that is, is in the best possible manner. 3.1.2 Typical AI problems While studying the typical range of tasks that we might expect an “intelligent entity” to perform, we need to consider both “common- place” tasks as well as expert tasks. Examples of common-place tasks include - Recognizing people, objects. - Communicating (through natural language). - Navigating around obstacles on the streets These tasks are done matter of firstly and routinely by people and some other animals. Expert tasks include: Medical diagnosis. Mathematical problem solving Playing games like chess These tasks cannot be done by all people, and can only be performed by skilled specialists. Now, which of these tasks are easy and which ones are hard? Clearly tasks of the first type are easy for humans to perform, and almost all are able to master them. The second range of tasks requires skill 4 CCS 4302 ARTIFICIAL INTELLIGENCE development and/or intelligence and only some specialists can perform them well. However, when we look at what computer systems have been able to achieve to date, we see that their achievements include performing sophisticated tasks like medical diagnosis, performing symbolic integration, proving theorems and playing chess. On the other hand it has proved to be very hard to make computer systems perform many routine tasks that all humans and a lot of animals can do. Examples of such tasks include navigating our way without running into things, catching prey and avoiding predators. Humans and animals are also capable of interpreting complex sensory information. We are able to recognize objects and people from the visual image that we receive. We are also able to perform complex social functions. Intelligent behaviour. This discussion brings us back to the question of what constitutes intelligent behaviour. Some of these tasks and applications are: Perception involving image recognition and computer vision Reasoning Learning Understanding language involving natural language processing, speech processing Solving problems Robotics 3.1.3 Practical Impact of AI AI components are embedded in numerous devices e.g. in copy machines for automatic correction of operation for copy quality improvement. AI systems are in everyday use for identifying credit card fraud, for advising doctors, for recognizing speech and in helping complex planning tasks. Then there are intelligent tutoring systems that provide students with personalized attention Thus AI has increased understanding of the nature of intelligence and found many applications. It has helped in the understanding of human reasoning, and of the nature of intelligence. It will also help you understand the complexity of modeling human reasoning. You can now look at a few famous AI systems. 5 CCS 4302 ARTIFICIAL INTELLIGENCE 1. ALVINN Autonomous Land Vehicle in a Neural Network In 1989, Dean Pomerleau at CMU created ALVINN. This is a system which learns to control vehicles by watching a person drive. It contains a neural network whose input is a 30x32 unit two dimensional camera image. The output layer is a representation of the direction the vehicle should travel. The system drove a car from the East Coast of USA to the west coast, a total of about 2850 miles. Out of this about 50 miles were driven by a human being and the rest solely by the system. 2. Deep Blue In 1997, the Deep Blue chess program created by IBM, beat the current world chess champion, Gary Kasparov. 3. Machine translation A system capable of translations between people speaking different languages will be a remarkable achievement of enormous economic and cultural benefit. Machine translation is one of the important fields of endeavour in AI. While some translating systems have been developed, there is a lot of scope for improvement in translation quality. 4. Autonomous agents In space exploration, robotic space probes autonomously monitor their surroundings, make decisions and act to achieve their goals. NASA's Mars rovers successfully completed their primary three-month missions in April, 2004. The Spirit rover had been exploring a range of Martian hills that took two months to reach. It is finding curiously eroded rocks that may be new pieces to the puzzle of the region's past. Spirit's twin, Opportunity, had been examining exposed rock layers inside a crater. 5. Internet Agents The explosive growth of the internet has also led to growing interest in internet agents to monitor users' tasks, seek needed information, and to learn which information is most useful 6 CCS 4302 ARTIFICIAL INTELLIGENCE 3.1.4 Approaches to AI Strong AI aims to build machines that can truly reason and solve problems. These machines should be self aware and their overall intellectual ability needs to be indistinguishable from that of a human being. Excessive optimism in the 1950s and 1960s concerning strong AI has given way to an appreciation of the extreme difficulty of the problem. Strong AI maintains that suitably programmed machines are capable of cognitive mental states. Weak AI deals with the creation of some form of computer-based artificial intelligence that cannot truly reason and solve problems, but can act as if it were intelligent. Weak AI holds that suitably programmed machines can simulate human cognition. Applied AI aims to produce commercially viable "smart" systems such as, security system that is able to recognise the faces of people who are permitted to enter a particular building. Applied AI has already enjoyed considerable success. Cognitive AI: computers are used to test theories about how the human mind works-- for example, theories about how we recognise faces and other objects, or about how we solve abstract problems. 3.1.5 Limits of AI Today Today’s successful AI systems operate in well-defined domains and employ narrow, specialized knowledge. Common sense knowledge is needed to function in complex, open-ended worlds. Such a system also needs to understand unconstrained natural language. However these capabilities are not yet fully present in today’s intelligent systems. What can AI systems do? Today’s AI systems have been able to achieve limited success in some of these tasks. In Computer vision, the systems are capable of face recognition In Robotics, we have been able to make vehicles that are mostly autonomous In Natural language processing, we have systems that are capable of simple machine translation Today’s Expert systems can carry out medical diagnosis in a narrow domain 7 CCS 4302 ARTIFICIAL INTELLIGENCE Speech understanding systems are capable of recognizing several thousand words continuous speech Planning and scheduling systems had been employed in scheduling experiments with the Hubble Telescope The Learning systems are capable of doing text categorization into about a 1000 topics In Games, AI systems can play at the Grand Master level in chess (world champion), checkers, etc. What can AI systems NOT do yet? Understand natural language robustly (e.g., read and understand articles in a newspaper) Surf the web Interpret an arbitrary visual scene Learn a natural language Construct plans in dynamic real-time domains Exhibit true autonomy and intelligence 3.2 AI History Intellectual roots of AI date back to the early studies of the nature of knowledge and reasoning. The dream of making a computer imitate humans also has a very early history. The concept of intelligent machines is found in Greek mythology. There is a story in the 8 century A.D about Pygmalion Olio, the legendary king of Cyprus. He fell in love with an ivory statue he made to represent his ideal woman. The king prayed to the goddess Aphrodite, and the goddess miraculously brought the statue to life. Other myths involve human-like artifacts. As a present from Zeus to Europa, Hephaestus created Talos, a huge robot. Talos was made of bronze and his duty was to patrol the beaches of Crete. Aristotle (384-322 BC) developed an informal system of syllogistic logic, which is the basis of the first formal deductive reasoning system. Early in the 17 century, Descartes proposed that bodies of animals are nothing more than complex machines. Pascal in 1642 made the first mechanical digital calculating machine. In the 19 century, George Boole developed a binary algebra representing (some) "laws of thought." Charles Babbage & Ada Byron worked on programmable mechanical calculating machines. 8 CCS 4302 ARTIFICIAL INTELLIGENCE In the late 19th century and early 20th century, mathematical philosophers like Gottlob Frege, Bertram Russell, Alfred North Whitehead, and Kurt Gödel built on Boole's initial logic concepts to develop mathematical representations of logic problems. The advent of electronic computers provided a revolutionary advance in the ability to study intelligence. In 1943 McCulloch & Pitts developed a Boolean circuit model of brain. They wrote the paper “A Logical Calculus of Ideas Immanent in Nervous Activity”, which explained how it is possible for neural networks to compute. Marvin Minsky and Dean Edmonds built the SNARC in 1951, which is the first randomly wired neural network learning machine (SNARC stands for Stochastic Neural-Analog Reinforcement Computer).It was a neural network computer that used 3000 vacuum tubes and a network with 40 neurons. In 1950 Turing wrote an article on “Computing Machinery and Intelligence” which articulated a complete vision of AI. For more on Alan Turing see the site http://www.turing.org.uk/turing/. Turing’s paper talked of many things, of solving problems by searching through the space of possible solutions, guided by heuristics. He illustrated his ideas on machine intelligence by reference to chess. He even propounded the possibility of letting the machine alter its own instructions so that machines can learn from experience. In 1956 a famous conference took place in Dartmouth. The conference brought together the founding fathers of artificial intelligence for the first time. In this meeting the term “Artificial Intelligence” was adopted. Between 1952 and 1956, Samuel had developed several programs for playing checkers. In 1956, Newell & Simon’s Logic Theorist was published. It is considered by many to be the first AI program. In 1959, Gelernter developed a Geometry Engine. In 1961 James Slagle (PhD dissertation, MIT) wrote a symbolic integration program SAINT. It was written in LISP and solved calculus problems at the college freshman level. In 1963, Thomas Evan's program Analogy was developed which could solve IQ test type analogy problems. 9 CCS 4302 ARTIFICIAL INTELLIGENCE In 1963, Edward A. Feigenbaum & Julian Feldman published Computers and Thought, the first collection of articles about artificial intelligence. In 1965, J. Allen Robinson invented a mechanical proof procedure, the Resolution Method, which allowed programs to work efficiently with formal logic as a representation language. In 1967, the Dendral program (Feigenbaum, Lederberg, Buchanan, Sutherland at Stanford) was demonstrated which could interpret mass spectra on organic chemical compounds. This was the first successful knowledge- based program for scientific reasoning. In 1969 the SRI robot, Shakey, demonstrated combining locomotion, perception and problem solving. The years from 1969 to 1979 marked the early development of knowledge-based systems In 1974, MYCIN demonstrated the power of rule-based systems for knowledge representation and inference in medical diagnosis and therapy. Knowledge representation schemes were developed. These included frames developed by Minski. Logic based languages like Prolog and Planner were developed. We will now mention a few of the AI systems that were developed over the years. The Meta-Dendral learning program produced new results in chemistry (rules of mass spectrometry) In the 1980s, Lisp Machines developed and marketed. Around 1985, neural networks return to popularity. In 1988, there was a resurgence of probabilistic and decision-theoretic methods. The early AI systems used general systems, little knowledge. AI researchers realized that specialized knowledge is required for rich tasks to focus reasoning. The 1990's saw major advances in all areas of AI including the following: Machine learning, data mining Intelligent tutoring, Case-based reasoning, Multi-agent planning, scheduling, Uncertain reasoning, Natural language understanding and translation, Vision, virtual reality, games, and other topics. 10 CCS 4302 ARTIFICIAL INTELLIGENCE Rod Brooks' COG Project at MIT, with numerous collaborators, made significant progress in building a humanoid robot. The first official Robo-Cup soccer match featuring table-top matches with 40 teams of interacting robots was held in 1997. For details, see the site http://murray.newcastle.edu.au/users/students/2002/c3012299/bg. html In the late 90s, Web crawlers and other AI-based information extraction programs become essential in widespread use of the world-wide-web. Interactive robot pets ("smart toys") become commercially available, realizing the vision of the 18th century novelty toy makers. In 2000, the Nomad robot explores remote regions of Antarctica looking for meteorite samples. AI in the news http://www.aaai.org/AITopics/html/current.html 4.0 CONCLUSION Artificial intelligence (AI) is the intelligence of machines and the branch of computer science that aims to create it. AI textbooks define the field as "the study and design of intelligent agents" where an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success. John McCarthy, who coined the term in 1956, defines it as "the science and engineering of making intelligent machines." The field was founded on the claim that a central property of humans, intelligence— the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine. This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings, issues which have been addressed by myth, fiction and philosophy since antiquity. Artificial intelligence has been the subject of optimism, but has also suffered setbacks and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science. 11 CCS 4302 ARTIFICIAL INTELLIGENCE 5.0 SUMMARY In this unit, you have learnt that: Artificial Intelligence is a branch of Science which deals with helping machines find solutions to complex problems in a more human-like fashion Typical AI problems AI History Limits of AI Today 6.0 TUTOR-MARKED ASSIGNMENT 1. Define intelligence. 2. What are the different approaches in defining artificial intelligence? 3. List five tasks that you will like a computer to be able to do within the next five years. 4. List five tasks that computers are unlikely to be able to do in the next five years. 7.0 REFERENCES/FURTHER READING Dowe D.L. & Hajek, A. R. (1997). "A Computational Extension to the Turning Test". Proceedings of the 4th Conference of the Australasian Cognitive Science Society. http://www.csse.monash. edu.au/publications/1997/tr-cs97-322-abs.html. Jose, H. (2000). "Beyond the Turing Test". Journal of Logic, Language and Information 9 (4): 447–466. doi:10.1023/A:1008367325700. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.894 3. McCarthy, J. (November 12, 2007). "What Is Artificial Intelligence?. http://www-formal.stanford.edu/jmc/whatisai/whatisai.html Shapiro, S. C. (1992). "Artificial Intelligence". In Shapiro, Stuart, C.. Encyclopedia of Artificial Intelligence (2nd ed.). New York: John Wiley. pp. 54–57. ISBN 0471503061. http://www.cse.buffalo. edu/~shapiro/Papers/ai.pdf. Skillings, J. (2006). "Getting Machines to Think Like Us". cnet. http://news.cnet.com/Getting-machines-to-think-like-us/2008-11394_3- 6090207.html. 12 Turing, Alan (1950), "Computing Machinery and Intelligence", Mind LIX (236): 433– 460, doi:10.1093/mind/LIX.236.433, ISSN 0026-4423, http://loebner.net/Prizef/TuringArticle.html. 13