ملزمة تكييف 246 صفحة صادق حسين (2) PDF
Document Details
Uploaded by ResponsivePolonium
صادق حسين
Tags
Summary
ملزمة تحتوي على ملخص مُفصّل لأعداد مركبة. تُوضح كيفية حل مسائل رياضية تتعلق بأعداد مركبة، وتقدم حلولاً تفصيلية لكل مثال. تحتوي الملزمة على أمثلة لحل مسائل رياضية مُختارة، إضافة إلى أسئلة مُتعلقة بالرياضيات.
Full Transcript
ﺍﳌﻘﺪﻣﺔ ﻭﻇﻔﻨﺎ ﺍﳌﻠﺰﻣﺔ ﻟﺘﻘﺪﻳﻢ ﺍﳊﻠﻮﻝ ﺍﻟﺘﻔﺼﻴﻠﻴﺔ ﻟﻠﻄﺎﻟﺐ ﻭﻟﻴﺲ ﺍﳊﻠﻮﻝ ﺍﻟﺘﻘﻠﻴﺪﻳﺔ ،ﻟﺬﻟﻚ ﺳﻴﺠﺪ ﺍﻟﻄﺎﻟﺐ ﺍﳌﻼﺣﻈﺎﺕ ﻭﺍﻟﺘﻔﺼﻴﻞ ﺿﻤﻦ ﺍﳊﻞ ﻛﺬﻟﻚ ﺳﻨﺘﻮﻗﻒ ﻟﻠﺘﻮﺿﻴﺢ ﻋﻨﺪ ﻣﻮﺍﺟﻬﺔ ﺍﳊﺎﻻﺕ ﺍﳋﺎﺻﺔ ﺇﺳﺘﺨﺪﻣﻨﺎ ﺍﻟﻠﻮﻥ ﺍﻟﺬﻫﱯ ﻟﺒﻴﺎﻥ ﺍﻻﺧﺘﺼﺎﺭ ﺍﻟﺘﺎﻡ ﺧﻼﻝ ﺍﳊﻞ ﺇﺳﺘﺨﺪﻣﻨﺎ ﺍﻟﻠﻮﻥ ﺍﻷﺧﻀﺮ ﻟﺒﻴﺎ...
ﺍﳌﻘﺪﻣﺔ ﻭﻇﻔﻨﺎ ﺍﳌﻠﺰﻣﺔ ﻟﺘﻘﺪﻳﻢ ﺍﳊﻠﻮﻝ ﺍﻟﺘﻔﺼﻴﻠﻴﺔ ﻟﻠﻄﺎﻟﺐ ﻭﻟﻴﺲ ﺍﳊﻠﻮﻝ ﺍﻟﺘﻘﻠﻴﺪﻳﺔ ،ﻟﺬﻟﻚ ﺳﻴﺠﺪ ﺍﻟﻄﺎﻟﺐ ﺍﳌﻼﺣﻈﺎﺕ ﻭﺍﻟﺘﻔﺼﻴﻞ ﺿﻤﻦ ﺍﳊﻞ ﻛﺬﻟﻚ ﺳﻨﺘﻮﻗﻒ ﻟﻠﺘﻮﺿﻴﺢ ﻋﻨﺪ ﻣﻮﺍﺟﻬﺔ ﺍﳊﺎﻻﺕ ﺍﳋﺎﺻﺔ ﺇﺳﺘﺨﺪﻣﻨﺎ ﺍﻟﻠﻮﻥ ﺍﻟﺬﻫﱯ ﻟﺒﻴﺎﻥ ﺍﻻﺧﺘﺼﺎﺭ ﺍﻟﺘﺎﻡ ﺧﻼﻝ ﺍﳊﻞ ﺇﺳﺘﺨﺪﻣﻨﺎ ﺍﻟﻠﻮﻥ ﺍﻷﺧﻀﺮ ﻟﺒﻴﺎﻥ ﺇﺿﺎﻓﺔ ﻣﻘﺪﺍﺭ ﺑﺼﻮﺭﺓ ﻣﻌﻴﻨﺔ ﻟﺘﻮﺣﻴﺪ ﻣﻘﺎﻣﺎﺕ ﺃﻭ ﻟﻠﻀﺮﺏ ﺑﺎﻟﻌﺪﺩ ﺍﳌﺮﺍﻓﻖ ﺃﻭ ﻟﺘﻮﻓﲑ ﻣﻘﺪﺍﺭ ﺩﺍﺧﻞ ﺍﻟﺘﻜﺎﻣﻞ ﺍﳌﻠﺰﻣﺔ ﺗﻘﺪﻡ ﺣﻠﻮﻝ ﺍﻷﻣﺜﻠﺔ ﻭﺍﻟﺘﻤﺎﺭﻳﻦ ﻭﺍﻷﺳﺌﻠﺔ ﺍﻟﻮﺯﺍﺭﻳﺔ ،ﺃﻏﻠﺐ ﺃﺳﺌﻠﺔ ﺍﻟﻜﺘﺎﺏ ﻭﺭﺩﺕ ﺿﻤﻦ ﺍﻷﺳﺌﻠﺔ ﺍﻟﻮﺯﺍﺭﻳﺔ ﻭﺭﻏﻢ ﺫﻟﻚ ﱂ ﻳﺘﻢ ﺍﻹﺷﺎﺭﺓ ﺇﱃ ﺫﻟﻚ ،ﻷﻧﻪ ﺑﺎﳋﺘﺎﻡ ﻋﻠﻰ ﺍﻟﻄﺎﻟﺐ ﺍﻻﳌﺎﻡ ﲜﻤﻴﻊ ﺍﻷﻓﻜﺎﺭ ﺍﳌﻄﺮﻭﺣﺔ ﺿﻤﻦ ﺍﳌﻨﻬﺞ ﺑﻐﺾ ﺍﻟﻨﻈﺮ ﻋﻦ ﺗﻀﻤﻴﻨﻬﺎ ﰲ ﺍﻷﺳﺌﻠﺔ ﺍﻟﻮﺯﺍﺭﻳﺔ ﺃﻡ ﻻ. ﺳﻴﺠﺪ ﺍﻟﻄﺎﻟﺐ ﺇﻥ ﺍﻷﺳﺌﻠﺔ ﻣﺮﺗﺒﺔ ﻭﻣﺼﻨﻔﺔ ﺣﺴﺐ ﻧﻮﻉ ﺍﻟﺴﺆﺍﻝ ﻭﻟﻴﺲ ﺣﺴﺐ ﺗﺴﻠﺴﻠﻪ ﰲ ﺍﻟﻜﺘﺎﺏ ،ﻭﻫﺬﺍ ﻳﻔﻴﺪ ﺍﻟﻄﺎﻟﺐ ﺑﻮﺟﻮﺩ ﺍﻷﺳﺌﻠﺔ ﺍﳌﺘﺸﺎﲠﺔ ﰲ ﻣﻜﺎﻥ ﻭﺍﺣﺪ. ﻣﺪﺭﺱ ﺍﳌﺎﺩﺓ ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ ﻣﺎﺫﺍ ﻳﻌﲏ ﺗﺴﺎﻭﻱ ﻋﺪﺩﻳﻦ ﻣﺮﻛﺒﲔ ﺍﳌﻮﺿﻮﻉ ﺍﻻﻭﻝ :ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ ﻤجموﻋﺔ اﻻﻋداد اﻟمر ﺔ ) (ℂﺘضم أﻋداداً ﺠدﯿدة ﻟم سبق ﻟنﺎ دراﺴتﻬﺎ اﻟتخیﻠﻲ = اﻟتخیﻠﻲ اﻟحق ﻘﻲ = اﻟحق ﻘﻲ ﺴﺎ ﻘﺎً ،وﻋﻠ ﻪ ﺨﻼل ﻫذا اﻟﻔصﻞ ﺴنﻌرف اﻟﻌدد اﻟمر ب وﻨﻌرف اﻟﻌمﻠ ﺎت ﻃﺮﻳﻘﺔ ﲨﻊ ﺍﻷﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ اﻟحسﺎﺒ ﺔ ﻋﻠ ﻪ ،وﻨتﻌﻠم طر ﻘﺔ رﻓﻌﻪ اﻟﻰ أس وطر ﻘﺔ إ جﺎد ﺠذرﻩ ،إﺴتﻌد اﻟتخیﻠﻲ +اﻟتخیﻠﻲ اﻟحق ﻘﻲ +اﻟحق ﻘﻲ ﻤﻌنﺎ ﻟتوﻀ ﺢ ﻫذﻩ اﻟمﻔﺎه م اﻟجدﯿدة. ﻃﺮﻳﻘﺔ ﺿﺮﺏ ﺍﻷﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ اﻟﻌدد اﻟمر ب ﻫو ﻋدد ﻤتر ب ﻤن ﺠزﺌین :ﺠزء ﺤق ﻘﻲ وﺠزء ﺘخیﻠﻲ ﻨضرب اﻟﻌدد اﻷول ﺎﻟﻌدد اﻟثﺎﻨﻲ ﺤسب ﺨﺎﺼ ﺔ اﻟتوز ﻊ ﻤضرو ﺎً ﺒـ𝒊𝒊 ﺘر ط ﺒینﻬمﺎ ﻋﻼﻤﺔ اﻟجمﻊ ﻧﻈﲑ ﻭﻣﺮﺍﻓﻖ ﺍﻟﻌﺪﺩ ﺍﳌﺮﻛﺐ 𝒊𝒊 ﻋدد ﺤق ﻘﻲ +ﻋدد ﺤق ﻘﻲ = اﻟﻌدد اﻟمر ب ① اﻟنظیر اﻟجمﻌﻲ ﻟﻠﻌدد اﻟمر ب 𝒃𝒃𝒃𝒃 ، 𝒄𝒄 = 𝒂𝒂 +ﻫو ﻋكس إﺸﺎرة اﻟجزء اﻟﺤﻘﯿﻘﻲ اﻟﺘﺨﯿﻠﻲ اﻟﺠﺰء ﻻﺤظ إن اﻟجزء اﻟتخیﻠﻲ ﻫو ﻋدد ﺤق ﻘﻲ ﻤضرو ﺎ ﺎﻟوﺤدة اﻟتخیﻠ ﺔ اﻟﻌدد ً 𝒃𝒃𝒃𝒃 ⟹ −𝒄𝒄 = −𝒂𝒂 − 𝒊𝒊 ،ﺤیث ② اﻟنظیر اﻟضر ﻲ ﻟﻠﻌدد اﻟمر ب 𝒃𝒃𝒃𝒃 ، 𝒄𝒄 = 𝒂𝒂 +ﻫو ﻤﻘﻠوب اﻟﻌدد 𝟏𝟏 𝟏𝟏 𝟏𝟏𝒊𝒊 = √− = ⟹ 𝒃𝒃𝒃𝒃 𝒄𝒄 𝒂𝒂 + ﺘسمﻰ اﻟص ﻐﺔ اﻟتﺎﻟ ﺔ اﻟص ﻐﺔ اﻟجبر ﺔ أو اﻟص ﻐﺔ اﻟﻌﺎد ﺔ ﻟﻠﻌدد ③ ﻤراﻓق اﻟﻌدد اﻟمر ب 𝒃𝒃𝒃𝒃 ، 𝒄𝒄 = 𝒂𝒂 +ﻨﻌكس إﺸﺎرة اﻟجزء اﻟتخیﻠﻲ اﻟمر ب ﻓﻘط 𝒃𝒃𝒃𝒃 𝒄𝒄 = 𝒂𝒂 + 𝒃𝒃𝒃𝒃 ⟹ 𝒄𝒄 = 𝒂𝒂 − ﻣﻼﺣﻈﺎﺕ ④ ﻻ ﺘوﺠد ف ﺔ ﻟﻘسمﺔ اﻻﻋداد اﻟمر ﺔ ،وﻋﻠ ﻪ ﻟتحو ﻞ اﻟكسور اﻟﻰ ① جب أن ﻨﻌﻠم إن اﻟص ﻐﺔ اﻟﻌﺎد ﺔ ﻟﻠﻌدد اﻟمر ب ،ﻨضرب سط وﻤﻘﺎم اﻟﻌدد اﻟمر ب ﺎﻟﻌدد 𝟏𝟏𝒊𝒊𝟐𝟐 = − 𝒊𝒊𝒊𝒊𝟑𝟑 = − 𝟏𝟏 = 𝟒𝟒𝒊𝒊 اﻟمراﻓق ﻟﻠمﻘﺎم و صورة ﻋﺎﻤﺔ :مكن اﻟتﻌﺎﻤﻞ ﻤﻊ ﻗوى 𝒊𝒊 ﺤسب اﻟﻘﺎﻋدة ⑤ اﻟﻌددان اﻟمتراﻓﻘﺎن :اﻟﻌدد اﻻول = ﻤراﻓق اﻟﻌدد اﻻﺨر 𝟑𝟑 𝒊𝒊𝟒𝟒𝟒𝟒+𝒓𝒓 = 𝒊𝒊𝒓𝒓 , 𝒓𝒓 = 𝟎𝟎, 𝟏𝟏, 𝟐𝟐, وﻫنﺎ 𝟒𝟒𝟒𝟒 ﻨﻘصد ﺒﻬﺎ أﺤد ﻤضﺎﻋﻔﺎت اﻟﻌدد ، 4أي إن ﺧﻮﺍﺹ ﻣﺮﺍﻓﻖ ﺍﻟﻌﺪﺩ ﺍﳌﺮﻛﺐ اﻟﻌدد 𝟒𝟒 اﻟ ﺎﻗﻲ +ﻤضﺎﻋﻒ اﻟ ﺎﻗﻲ ① اﺸﺎرة اﻟمراﻓق ﺘتوزع ﻋﻠﻰ ﻋمﻠ ﺎت اﻟجمﻊ واﻟطرح واﻟضرب واﻟﻘسمﺔ 𝒊𝒊 𝒊𝒊 = = ) 𝟏𝟏𝒄𝒄 ( 𝒄𝒄 + 𝒄𝒄 𝒄𝒄𝟏𝟏 +𝟐𝟐 ▼ ﻤضﺎﻋﻔﺎت اﻟﻌدد 4ﺘشمﻞ ﻤضﺎﻋﻔﺎت ﻤضﺎﻋﻔﺎﺘﻬﺎ ،أي إﻨﻬﺎ ﺘشمﻞ 𝟏𝟏 ⎧ ⎪ = ) 𝟏𝟏𝒄𝒄 ( 𝒄𝒄𝟏𝟏 − 𝒄𝒄 𝒄𝒄𝟏𝟏 −𝟐𝟐 ﻤضﺎﻋﻔﺎت اﻻﻋداد 𝟖𝟖 و 𝟏𝟏𝟏𝟏 و 𝟏𝟏𝟏𝟏 و...اﻟﺦ ⟹ = ) 𝟐𝟐𝒄𝒄 ∙ 𝟏𝟏𝒄𝒄 ( ∙ 𝟏𝟏𝒄𝒄 𝟐𝟐𝒄𝒄 ② ﯿرﻤز ﻟمجموﻋﺔ اﻷﻋداد اﻟمر ﺔ ﺎﻟرﻤز ،ℂوﻫﻲ أوﺴﻊ ﻤن ﻤجموﻋﺔ ⎨ 𝒄𝒄 𝒄𝒄 = 𝟏𝟏 ⎪ 𝟏𝟏 اﻷﻋداد اﻟحق ق ﺔ ،أي إن 𝑹𝑹 ⊆ ℂ 𝟐𝟐𝒄𝒄 𝟐𝟐𝒄𝒄 ⎩ ② اﻟمراﻓق ﻟﻠمراﻓق = اﻟﻌدد اﻷﺼﻠﻲ ﻣﻼﺣﻈﺎﺕ ﻣﻬﻤﺔ 𝒄𝒄 = ) 𝒄𝒄 ( ① ﻓﻲ ﺤﺎﻟﺔ اﻟﻘوة اﻟسﺎﻟ ﺔ ﻨستخدم اﻟص ﻐﺔ 𝟐𝟐 𝟐𝟐 𝟏𝟏 اﻟتخیﻠﻲ +اﻟحق ﻘﻲ = ﻤراﻓﻘﻪ × اﻟﻌدد ③ 𝒏𝒏 = 𝒏𝒏𝒊𝒊− 𝒊𝒊 𝟐𝟐𝒃𝒃 𝒄𝒄 ∙ 𝒄𝒄 = 𝒂𝒂𝟐𝟐 + ② ﺨﻼل ﻫذا اﻟﻔصﻞ :مكن إ جﺎد ق مﺔ اﻟجذر اﻟتر ﻌﻲ ﻟﻠﻌدد اﻟسﺎﻟب ④ ﻞ ﻋدد ﺤق ﻘﻲ = ﻤراﻓﻘﻪ ﺤسب اﻟﻘﺎﻋدة 𝑹𝑹 ∈ 𝒄𝒄 ∀ 𝒄𝒄 = 𝒄𝒄 , 𝒊𝒊𝒂𝒂√ = 𝒂𝒂√− ﺃﺳﺌﻠﺔ "ﺿﻊ ﺑﺎﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﺩﻳﺔ /ﺑﺴﻂ /ﺍﺛﺒﺖ ﺍﻥ" ③ ﺨﻼل ﻫذا اﻟﻔصﻞ :أي ﻋدد ﺤق ﻘﻲ مكن تﺎﺒتﻪ حﺎﺼﻞ ﺠمﻊ ﻤر ﻌین ،مكن ﺘحﻠیﻠﻪ ﻀمن اﻷﻋداد اﻟمر ﺔ ﺤسب اﻟص ﻐﺔ اﻟتﺎﻟ ﺔ: اﻤثﻠﺔ ص 6اﻤثﻠﺔ ﺤول ﺤسﺎب ﻗوى 𝒊𝒊: )𝒚𝒚𝒚𝒚 𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐 = (𝒙𝒙 + 𝒚𝒚𝒚𝒚)(𝒙𝒙 − 𝟏𝟏𝒊𝒊𝟐𝟐 = − ④ ﻟحﻞ اﻟمﻌﺎدﻻت و جﺎد ق م 𝒙𝒙 و 𝒚𝒚 جب تﺎ ﺔ اﻟطرﻓین ﺎﻟص ﻐﺔ 𝒊𝒊𝒊𝒊𝟑𝟑 = 𝒊𝒊𝟐𝟐 ∙ 𝒊𝒊 = −𝟏𝟏 ∙ 𝒊𝒊 = − 𝟏𝟏 = )𝟏𝟏𝒊𝒊𝟒𝟒 = 𝒊𝒊𝟐𝟐 ∙ 𝒊𝒊𝟐𝟐 = (−𝟏𝟏)(− اﻟﻌﺎد ﺔ ﻟﻠﻌدد اﻟمر ب 𝒊𝒊𝒊𝒊𝟐𝟐𝟐𝟐 = 𝒊𝒊𝟐𝟐𝟐𝟐+𝟑𝟑 = 𝒊𝒊𝟐𝟐𝟐𝟐 ∙ 𝒊𝒊𝟑𝟑 = 𝟏𝟏 ∙ 𝒊𝒊𝟑𝟑 = 𝒊𝒊𝟑𝟑 = − 𝒊𝒊 = 𝟏𝟏𝒊𝒊 ∙ 𝟏𝟏 = 𝟏𝟏𝒊𝒊 ∙ 𝟖𝟖𝟖𝟖𝒊𝒊 = 𝟏𝟏𝒊𝒊𝟖𝟖𝟖𝟖 = 𝒊𝒊𝟖𝟖𝟖𝟖+ 1ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ 𝟎𝟎 = 𝟏𝟏 = 𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏 + 𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟒𝟒𝒊𝒊 = 𝟕𝟕𝒊𝒊− = = = = 𝒊𝒊 = 𝟑𝟑= 𝒊𝒊𝟒𝟒− ﻤثﺎل -9-ﺠد اﻟنظیر اﻟضر ﻲ ﻟﻠﻌدد 𝟐𝟐𝟐𝟐 𝒄𝒄 = 𝟐𝟐 −وﻀﻌﻪ ﺎﻟص ﻐﺔ 𝟑𝟑𝒊𝒊 𝟑𝟑𝒊𝒊 ∙ 𝟏𝟏 𝟑𝟑𝒊𝒊 ∙ 𝟒𝟒𝒊𝒊 𝟑𝟑𝒊𝒊𝟕𝟕 𝒊𝒊𝟒𝟒+ 𝟏𝟏𝟏𝟏− 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟒𝟒𝒊𝒊 𝒊𝒊 اﻟﻌﺎد ﺔ ﻟﻠﻌدد اﻟمر ب. = 𝟑𝟑 𝟏𝟏𝟏𝟏 = 𝟑𝟑= 𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏+ = 𝟑𝟑= 𝒊𝒊𝟒𝟒− 𝒊𝒊 𝒊𝒊 𝒊𝒊 ∙ 𝒊𝒊 𝟑𝟑𝒊𝒊 𝟑𝟑𝒊𝒊 ∙ 𝟏𝟏 = اﻟنظیر اﻟضر ﻲ 𝟏𝟏 𝒊𝒊 = 𝟐𝟐𝟐𝟐𝟐𝟐− 𝟏𝟏 𝟐𝟐𝟐𝟐 𝟐𝟐 + 𝟐𝟐𝟐𝟐 𝟐𝟐 + 𝟐𝟐𝟐𝟐 𝟐𝟐 + ﻤثﺎل -1-اﻛتب ﻤﺎ ﯿﻠﻲ ﺄ سط ﺼورة: = = = 𝟏𝟏𝟏𝟏 𝟎𝟎𝟏𝟏𝟏𝟏+ 𝟐𝟐𝟐𝟐 𝟐𝟐 − 𝟐𝟐𝟐𝟐 𝟐𝟐 + )𝟐𝟐( (𝟐𝟐) + 𝟐𝟐 𝟐𝟐 𝟒𝟒 𝟒𝟒 + 𝒊𝒊 = 𝒊𝒊 )𝒂𝒂 𝟏𝟏 = )𝟏𝟏()𝟏𝟏( = 𝟎𝟎𝒊𝒊 ∙ 𝒊𝒊 = 𝟏𝟏𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟐𝟐𝟐𝟐 𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐 + 𝟏𝟏𝒃𝒃) 𝒊𝒊𝟓𝟓𝟓𝟓 = 𝒊𝒊𝟓𝟓𝟓𝟓+𝟐𝟐 = 𝒊𝒊𝟓𝟓𝟓𝟓 ∙ 𝒊𝒊𝟐𝟐 = (𝟏𝟏)(−𝟏𝟏) = − = 𝒊𝒊 = + = + 𝟖𝟖 𝟒𝟒 𝟒𝟒 𝟖𝟖 𝟖𝟖 𝟗𝟗𝟗𝟗𝒊𝒊 ∙ )𝟏𝟏( = 𝟗𝟗𝟗𝟗𝒊𝒊 ∙ )𝟒𝟒𝟒𝟒(𝟑𝟑𝒊𝒊 = 𝟗𝟗𝟗𝟗𝒄𝒄) 𝒊𝒊𝟏𝟏𝟏𝟏𝟏𝟏+𝟗𝟗𝟗𝟗 = 𝒊𝒊𝟑𝟑(𝟒𝟒𝟒𝟒)+ ﻤثﺎل -12-ﻀﻊ ﻼً ﻤمﺎ ﺄﺘﻲ ﺎﻟصورة 𝒃𝒃𝒃𝒃 : 𝒂𝒂 + 𝒊𝒊 = 𝒊𝒊)𝟏𝟏( = 𝟏𝟏𝒊𝒊 ∙ 𝟗𝟗𝟗𝟗𝒊𝒊 = 𝟏𝟏= 𝒊𝒊𝟗𝟗𝟗𝟗 = 𝒊𝒊𝟗𝟗𝟗𝟗+ 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + 𝟐𝟐𝒊𝒊 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏− 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟒𝟒𝒊𝒊 )𝒂𝒂 = = )𝒅𝒅 𝒊𝒊 = 𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏𝟏𝟏+ = 𝟏𝟏𝒊𝒊 ∙ 𝟏𝟏𝟏𝟏 = = 𝟏𝟏= 𝒊𝒊𝟒𝟒− 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 + )𝟏𝟏( (𝟏𝟏) + 𝟐𝟐 𝟐𝟐 𝒊𝒊 𝒊𝒊 𝒊𝒊 𝟏𝟏 ∙ 𝒊𝒊 𝒊𝒊 𝒊𝒊𝟐𝟐 𝟏𝟏 𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝒊𝒊= 𝒊𝒊𝟑𝟑 = − = = 𝒊𝒊 = 𝒊𝒊 = 𝟎𝟎 + ﻤثﺎل -2-اﻛتب اﻻﻋداد اﻻﺘ ﺔ ﻋﻠﻰ ﺼورة 𝒃𝒃𝒃𝒃 : 𝒂𝒂 + 𝟏𝟏 𝟏𝟏 + 𝟐𝟐 𝒊𝒊 𝟐𝟐 − 𝟒𝟒𝟒𝟒 𝟐𝟐 − 𝒊𝒊 𝟑𝟑 − 𝟎𝟎𝟎𝟎 𝒂𝒂) − 𝟓𝟓 = −𝟓𝟓 + )𝒃𝒃 = 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟏𝟏𝟏𝟏𝟏𝟏 𝒃𝒃) √−𝟏𝟏𝟏𝟏𝟏𝟏 = √𝟏𝟏𝟏𝟏𝟏𝟏 √−𝟏𝟏 = 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟎𝟎 + 𝟒𝟒 𝟔𝟔 − 𝟖𝟖𝟖𝟖 − 𝟑𝟑𝟑𝟑 + 𝟒𝟒𝒊𝒊𝟐𝟐 𝟔𝟔 − 𝟏𝟏𝟏𝟏𝟏𝟏 − = = 𝒊𝒊𝟑𝟑√ 𝒄𝒄) − 𝟏𝟏 − √−𝟑𝟑 = −𝟏𝟏 − 𝟐𝟐)𝟒𝟒( (𝟑𝟑)𝟐𝟐 + 𝟏𝟏𝟏𝟏 𝟗𝟗 + 𝟏𝟏𝟏𝟏𝟏𝟏 𝟐𝟐 − 𝟐𝟐 𝟏𝟏𝟏𝟏 𝟓𝟓 𝟏𝟏 𝒊𝒊𝟐𝟐𝟐𝟐√ 𝟏𝟏 𝒊𝒊𝟐𝟐𝟐𝟐√ 𝟏𝟏 + √−𝟐𝟐𝟐𝟐 𝟏𝟏 + = = − 𝒊𝒊 )𝒅𝒅 = = + 𝒊𝒊 = + 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟒𝟒 𝟒𝟒 𝟒𝟒 𝟒𝟒 𝟒𝟒 𝟒𝟒 𝟐𝟐𝟐𝟐 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + 𝟐𝟐𝟐𝟐 −𝟐𝟐 − ﻤثﺎل -4-ﺠد ﻤجموع اﻟﻌددﯿن اﻟمر بین ﻓﻲ ﻞ ﻤمﺎ ﺄﺘﻲ: )𝒄𝒄 = 𝒊𝒊 −𝟐𝟐 + 𝒊𝒊 −𝟐𝟐 + 𝒊𝒊 −𝟐𝟐 − 𝒊𝒊𝟐𝟐√𝟐𝟐 𝒂𝒂) 𝟑𝟑 + 𝟒𝟒√𝟐𝟐𝒊𝒊 , 𝟓𝟓 − 𝟐𝟐𝒊𝒊𝟐𝟐 −𝟐𝟐 − 𝒊𝒊 − 𝟒𝟒𝟒𝟒 − = 𝒊𝒊 𝟐𝟐√𝟐𝟐 𝟑𝟑 + 𝟒𝟒√𝟐𝟐𝒊𝒊 + 𝟓𝟓 − 𝟐𝟐√𝟐𝟐𝒊𝒊 = (𝟑𝟑 + 𝟓𝟓) + 𝟒𝟒√𝟐𝟐 − 𝟐𝟐)𝟏𝟏( (−𝟐𝟐)𝟐𝟐 + 𝒊𝒊𝟓𝟓−𝟐𝟐 − 𝒊𝒊 − 𝟒𝟒𝟒𝟒 + 𝟐𝟐 − 𝒊𝒊𝟐𝟐√𝟐𝟐 = 𝟖𝟖 + = = 𝒊𝒊= − 𝟓𝟓𝟓𝟓 𝒃𝒃) 𝟑𝟑 , 𝟐𝟐 − 𝟏𝟏 𝟒𝟒 + 𝟓𝟓 𝒊𝒊 = 𝟎𝟎 − 𝟓𝟓𝟓𝟓 𝟑𝟑 + 𝟐𝟐 − 𝟓𝟓𝟓𝟓 = 𝟓𝟓 − 𝟑𝟑𝟑𝟑 𝒄𝒄) 𝟏𝟏 − 𝒊𝒊 , 𝟐𝟐𝟐𝟐 𝟏𝟏 − 𝒊𝒊 + 𝟑𝟑𝟑𝟑 = 𝟏𝟏 + (−𝟏𝟏 + 𝟑𝟑)𝒊𝒊 = 𝟏𝟏 +ﺘمر ن -1-ﻀﻊ ﻼً ﻤمﺎ ﺄﺘﻲ ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ ﻟﻠﻌدد اﻟمر ب: 𝒊𝒊 𝒊𝒊𝟓𝟓 = 𝒊𝒊𝟒𝟒+𝟏𝟏 = 𝒊𝒊𝟏𝟏 = 𝒊𝒊 = 𝟎𝟎 + ﻤثﺎل -5-ﺠد ﻨﺎﺘﺞ(𝟕𝟕 − 𝟏𝟏𝟏𝟏𝟏𝟏) − (𝟗𝟗 + 𝟒𝟒𝟒𝟒) : 𝟎𝟎𝟎𝟎 𝒊𝒊𝟔𝟔 = 𝒊𝒊𝟒𝟒+𝟐𝟐 = 𝒊𝒊𝟐𝟐 = −𝟏𝟏 = −𝟏𝟏 + 𝟒𝟒𝟒𝟒 (𝟕𝟕 − 𝟏𝟏𝟏𝟏𝟏𝟏) − (𝟗𝟗 + 𝟒𝟒𝟒𝟒) = 𝟕𝟕 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟗𝟗 − 𝟎𝟎𝟎𝟎 𝒊𝒊𝟏𝟏𝟏𝟏𝟏𝟏 = 𝒊𝒊𝟏𝟏𝟏𝟏𝟏𝟏+𝟎𝟎 = 𝒊𝒊𝟎𝟎 = 𝟏𝟏 = 𝟏𝟏 + 𝒊𝒊)𝟒𝟒 = (𝟕𝟕 − 𝟗𝟗) + (−𝟏𝟏𝟏𝟏 − 𝒊𝒊 𝒊𝒊𝟗𝟗𝟗𝟗𝟗𝟗 = 𝒊𝒊𝟗𝟗𝟗𝟗𝟗𝟗+𝟑𝟑 = 𝒊𝒊𝟑𝟑 = −𝒊𝒊 = 𝟎𝟎 − 𝟏𝟏𝟏𝟏𝟏𝟏 = −𝟐𝟐 − } ⋯ 𝒊𝒊𝟒𝟒𝟒𝟒+𝟏𝟏 , ∀𝒏𝒏 ∈ 𝒘𝒘 = {𝟎𝟎, 𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟒𝟒, 𝒊𝒊 𝒊𝒊𝟒𝟒𝟒𝟒+𝟏𝟏 = 𝒊𝒊𝟏𝟏 = 𝒊𝒊 = 𝟎𝟎 + ﻤثـــﺎل -6-ﺤـــﻞ اﻟمﻌـــﺎدﻟـــﺔ (𝟐𝟐 − 𝟒𝟒𝟒𝟒) + 𝒙𝒙 = −𝟓𝟓 + 𝒊𝒊 :ﺤیـــث )𝟐𝟐𝟐𝟐 (𝟐𝟐 + 𝟑𝟑𝟑𝟑) 𝟐𝟐 + (𝟏𝟏𝟏𝟏 + 𝒙𝒙 ∈ ℂ 𝟐𝟐 )𝟐𝟐𝟐𝟐 = 𝟒𝟒 + 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟗𝟗𝒊𝒊 + (𝟏𝟏𝟏𝟏 + 𝒊𝒊 (𝟐𝟐 − 𝟒𝟒𝟒𝟒) + 𝒙𝒙 = −𝟓𝟓 + )𝟐𝟐𝟐𝟐 = (𝟒𝟒 + 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟗𝟗) + (𝟏𝟏𝟏𝟏 + 𝟒𝟒𝟒𝟒 𝒙𝒙 = −𝟓𝟓 + 𝒊𝒊 − 𝟐𝟐 + )𝟐𝟐𝟐𝟐 = (−𝟓𝟓 + 𝟏𝟏𝟏𝟏𝟏𝟏) + (𝟏𝟏𝟏𝟏 + 𝒙𝒙 = 𝒊𝒊)𝟒𝟒 (−𝟓𝟓 − 𝟐𝟐) + (𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟕𝟕 + 𝟓𝟓𝟓𝟓 𝒙𝒙 = −𝟕𝟕 + 𝟐𝟐 𝒊𝒊𝟏𝟏𝟏𝟏 (𝟏𝟏𝟏𝟏 + 𝟑𝟑𝟑𝟑)(𝟎𝟎 + 𝟔𝟔𝟔𝟔) = 𝟎𝟎 + 𝟔𝟔𝟔𝟔𝟔𝟔 + 𝟎𝟎 + ﻤثﺎل -7-ﺠد ﻨﺎﺘﺞ ﻼً ﻤمﺎ ﺄﺘﻲ: 𝟔𝟔𝟔𝟔𝟔𝟔 = −𝟏𝟏𝟏𝟏 + 𝟐𝟐 𝟐𝟐 𝟐𝟐𝒊𝒊𝟏𝟏𝟏𝟏 𝒂𝒂) (𝟐𝟐 − 𝟑𝟑𝟑𝟑)(𝟑𝟑 − 𝟓𝟓𝟓𝟓) = 𝟔𝟔 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 + 𝟐𝟐)𝒊𝒊 (𝟏𝟏 + 𝒊𝒊)𝟒𝟒 − (𝟏𝟏 − 𝒊𝒊)𝟒𝟒 = (𝟏𝟏 + 𝒊𝒊)𝟐𝟐 − (𝟏𝟏 − 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟔𝟔 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟏𝟏𝟏𝟏 = −𝟗𝟗 − 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝒊𝒊 = 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝒊𝒊 − 𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 𝟐𝟐)𝟒𝟒𝟒𝟒( 𝒃𝒃) (𝟑𝟑 + 𝟒𝟒𝟒𝟒) = (𝟑𝟑)𝟐𝟐 + 𝟐𝟐(𝟑𝟑)(𝟒𝟒𝟒𝟒) + 𝟐𝟐 𝟐𝟐 ]𝟏𝟏 = [𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏] − [𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐 𝟏𝟏𝟏𝟏 = 𝟗𝟗 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏𝒊𝒊𝟐𝟐 = 𝟗𝟗 + 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟐𝟐𝒊𝒊𝟒𝟒 = (𝟐𝟐𝟐𝟐)𝟐𝟐 − (−𝟐𝟐𝟐𝟐)𝟐𝟐 = 𝟒𝟒𝒊𝒊𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 = −𝟕𝟕 + 𝟎𝟎𝟎𝟎 = −𝟒𝟒 + 𝟒𝟒 = 𝟎𝟎 = 𝟎𝟎 + 𝒊𝒊 𝒄𝒄) 𝒊𝒊(𝟏𝟏 + 𝒊𝒊) = 𝒊𝒊 + 𝒊𝒊𝟐𝟐 = 𝒊𝒊 − 𝟏𝟏 = −𝟏𝟏 + 𝟐𝟐 𝒊𝒊𝟏𝟏𝟏𝟏 + 𝒊𝒊 𝟏𝟏𝟏𝟏 + 𝒊𝒊 − 𝒊𝒊 −𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟏𝟏 −𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟓𝟓 𝟏𝟏𝟏𝟏 = = 𝟐𝟐 = 𝒅𝒅) − (𝟒𝟒 + 𝟑𝟑𝟑𝟑) = −𝟏𝟏𝟏𝟏 − 𝒊𝒊 𝒊𝒊 𝒊𝒊 𝒊𝒊− 𝒊𝒊− 𝟏𝟏 𝟐𝟐 𝟐𝟐 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟏𝟏 − 𝟐𝟐)𝒊𝒊 𝒆𝒆) (𝟏𝟏 + 𝒊𝒊)𝟐𝟐 + (𝟏𝟏 − ) 𝟐𝟐𝒊𝒊 = (𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 ) + (𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 2 set by: Sadiq Hussain ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ 𝟏𝟏 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟏𝟏 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟐𝟐𝒊𝒊𝟏𝟏𝟏𝟏 𝟗𝟗 + 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 + = − = = 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟐𝟐)𝟒𝟒( (𝟑𝟑)𝟐𝟐 + 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟐𝟐𝟐𝟐𝟐𝟐 𝟗𝟗 + 𝟐𝟐𝟒𝟒𝟒𝟒 − 𝟏𝟏𝟏𝟏 −𝟕𝟕 + = − = = 𝟐𝟐)𝟒𝟒( (𝟑𝟑)𝟐𝟐 + (𝟒𝟒)𝟐𝟐 (𝟑𝟑)𝟐𝟐 + 𝟏𝟏𝟏𝟏 𝟗𝟗 + 𝟐𝟐𝟐𝟐 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟐𝟐𝟐𝟐 𝟕𝟕− = − = + 𝒊𝒊 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟒𝟒𝟒𝟒 𝟑𝟑 + 𝟒𝟒𝟒𝟒 − 𝟑𝟑 + 𝟖𝟖 𝒊𝒊 𝒊𝒊 𝟑𝟑𝟑𝟑 𝟐𝟐 − 𝟐𝟐𝒊𝒊𝟑𝟑 𝟐𝟐𝟐𝟐 − 𝟑𝟑 𝟐𝟐𝟐𝟐 + = = 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒊𝒊 = = = 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟑𝟑𝟑𝟑 𝟐𝟐 + 𝟑𝟑𝟑𝟑 𝟐𝟐 + 𝟑𝟑𝟑𝟑 𝟐𝟐 − )𝟑𝟑( (𝟐𝟐) + 𝟐𝟐 𝟐𝟐 𝟗𝟗 𝟒𝟒 + 𝟐𝟐)𝒊𝒊 (𝟏𝟏 − 𝒊𝒊)𝟐𝟐 (𝟏𝟏 + 𝟑𝟑 𝟐𝟐 )𝒃𝒃 + 𝟐𝟐= − = + 𝒊𝒊 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 𝟐𝟐)𝒊𝒊 (𝟏𝟏 − 𝒊𝒊)𝟐𝟐 (𝟏𝟏 + 𝟑𝟑 = 𝑳𝑳𝑳𝑳𝑳𝑳 + 𝟑𝟑 𝒊𝒊 𝟑𝟑 + 𝟑𝟑 𝒊𝒊 𝟑𝟑 + 𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝒊𝒊 𝟑𝟑 − 𝟑𝟑𝟑𝟑 + 𝒊𝒊 − 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − = = 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝟐𝟐)𝟏𝟏( (𝟏𝟏)𝟐𝟐 + 𝟐𝟐𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + = + 𝟑𝟑 𝟏𝟏 𝟑𝟑 − 𝟑𝟑𝟑𝟑 + 𝒊𝒊 + 𝟑𝟑 𝟐𝟐𝟐𝟐 𝟒𝟒 − 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − = = 𝟏𝟏 𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟏𝟏 + 𝟐𝟐 = + 𝟑𝟑 𝟐𝟐𝟐𝟐 𝟒𝟒 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝟑𝟑)𝒊𝒊 = − = (𝟐𝟐 − 𝒊𝒊 −𝟐𝟐𝟐𝟐 𝟏𝟏 − 𝒊𝒊 𝟐𝟐𝟐𝟐 𝟏𝟏 + 𝟐𝟐 𝟐𝟐 = + )𝒊𝒊 = (𝟐𝟐 − 𝒊𝒊)𝟐𝟐 (𝟐𝟐 − 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 + 𝟐𝟐𝒊𝒊𝟐𝟐 −𝟐𝟐𝟐𝟐 + 𝟐𝟐𝒊𝒊𝟐𝟐 𝟐𝟐𝟐𝟐 + )𝒊𝒊 = 𝟒𝟒 − 𝟒𝟒𝟒𝟒 + 𝒊𝒊𝟐𝟐 (𝟐𝟐 − = + )𝒊𝒊 = (𝟒𝟒 − 𝟒𝟒𝟒𝟒 − 𝟏𝟏)(𝟐𝟐 − 𝟐𝟐)𝟏𝟏( (𝟏𝟏)𝟐𝟐 + (𝟏𝟏)𝟐𝟐 (𝟏𝟏)𝟐𝟐 + 𝟐𝟐𝟐𝟐 −𝟐𝟐 − 𝟐𝟐𝟐𝟐 −𝟐𝟐 + )𝒊𝒊 = (𝟑𝟑 − 𝟒𝟒𝟒𝟒)(𝟐𝟐 − = + 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟔𝟔 − 𝟑𝟑𝟑𝟑 − 𝟖𝟖𝟖𝟖 + 𝟒𝟒𝒊𝒊𝟐𝟐 = 𝟐𝟐 − 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐− 𝟐𝟐 𝟐𝟐− 𝟐𝟐𝒊𝒊𝟏𝟏𝟏𝟏 𝟐𝟐 + 𝟑𝟑𝟑𝟑 𝟏𝟏 + 𝟒𝟒𝟒𝟒 𝟐𝟐 + 𝟖𝟖𝟖𝟖 + 𝟑𝟑𝟑𝟑 + = − 𝒊𝒊 + 𝒊𝒊 + × = 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟒𝟒 + 𝟐𝟐𝒊𝒊 𝟒𝟒 + 𝒊𝒊 − 𝟒𝟒𝟒𝟒 − 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟐𝟐= −𝟏𝟏 − 𝒊𝒊 − 𝟏𝟏 + 𝒊𝒊 = − 𝟏𝟏𝟏𝟏 𝟐𝟐 + 𝟏𝟏𝟏𝟏𝟏𝟏 − = 𝟒𝟒 = 𝟑𝟑𝒊𝒊 𝒄𝒄) (𝟏𝟏 − 𝒊𝒊) 𝟏𝟏 − 𝒊𝒊𝟐𝟐 𝟏𝟏 − 𝟏𝟏 𝟒𝟒 − 𝟑𝟑𝟑𝟑 + 𝟐𝟐 𝟑𝟑 𝟑𝟑𝟑𝟑 −𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 𝟓𝟓 + 𝒊𝒊 𝑳𝑳𝑳𝑳𝑳𝑳 = (𝟏𝟏 − 𝒊𝒊) 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 − = 𝟑𝟑𝟑𝟑 𝟓𝟓 − 𝟑𝟑𝟑𝟑 𝟓𝟓 + ])𝒊𝒊= (𝟏𝟏 − 𝒊𝒊)[𝟏𝟏 − (−𝟏𝟏)][𝟏𝟏 − (− 𝟐𝟐𝒊𝒊𝟑𝟑𝟑𝟑 −𝟓𝟓𝟓𝟓 − 𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟓𝟓𝟓𝟓𝟓𝟓 + )𝒊𝒊 = (𝟏𝟏 − 𝒊𝒊)(𝟏𝟏 + 𝟏𝟏)(𝟏𝟏 + = 𝟐𝟐)𝟑𝟑( (𝟓𝟓)𝟐𝟐 + 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟒𝟒 = )𝟐𝟐(𝟐𝟐 = )𝟏𝟏 = 𝟐𝟐(𝟏𝟏 − 𝒊𝒊)(𝟏𝟏 + 𝒊𝒊) = 𝟐𝟐(𝟏𝟏 + 𝟑𝟑𝟑𝟑 −𝟓𝟓𝟎𝟎 − 𝟑𝟑𝟑𝟑𝟑𝟑 + 𝟓𝟓𝟓𝟓𝟓𝟓 − ﻤثﺎل -13-ﺤﻠﻞ ﻼً ﻤن اﻟﻌددﯿن 𝟏𝟏𝟏𝟏 𝟓𝟓𝟓𝟓,اﻟﻰ ﺤﺎﺼﻞ ﻀرب ﻋﺎﻤﻠین = 𝟗𝟗 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐 𝟖𝟖𝟖𝟖−𝟖𝟖𝟖𝟖 + 𝟐𝟐𝟐𝟐𝟐𝟐 − ﻤن ﺼورة 𝒃𝒃𝒃𝒃 𝒂𝒂 +ﺤیث 𝒃𝒃 𝒂𝒂,ﻋددﯿن ﻨسبیین = = + 𝒊𝒊 𝟑𝟑𝟑𝟑 𝟑𝟑𝟑𝟑 𝟑𝟑𝟑𝟑 𝟐𝟐 𝟐𝟐 )𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 = 𝟗𝟗 + 𝟏𝟏 = (𝟑𝟑) + (𝟏𝟏) = (𝟑𝟑 − 𝟏𝟏𝟏𝟏)(𝟑𝟑 + 𝟑𝟑)𝒊𝒊 (𝟏𝟏 + 𝒊𝒊)𝟑𝟑 + (𝟏𝟏 − )𝒊𝒊 = (𝟑𝟑 − 𝒊𝒊)(𝟑𝟑 + )𝒊𝒊 = (𝟏𝟏 + 𝒊𝒊)𝟐𝟐 (𝟏𝟏 + 𝒊𝒊) + (𝟏𝟏 − 𝒊𝒊)𝟐𝟐 (𝟏𝟏 − )𝟐𝟐𝟐𝟐 𝟓𝟓𝟓𝟓 = 𝟒𝟒𝟒𝟒 + 𝟒𝟒 = (𝟕𝟕)𝟐𝟐 + (𝟐𝟐)𝟐𝟐 = (𝟕𝟕 − 𝟐𝟐𝟐𝟐)(𝟕𝟕 + )𝒊𝒊 = 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 (𝟏𝟏 + 𝒊𝒊) + 𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 (𝟏𝟏 − )𝒊𝒊 = (𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏)(𝟏𝟏 + 𝒊𝒊) + (𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟏𝟏)(𝟏𝟏 −طر ﻘﺔ أﺨرى: )𝟑𝟑𝟑𝟑 𝟏𝟏𝟏𝟏 = 𝟏𝟏 + 𝟗𝟗 = (𝟏𝟏)𝟐𝟐 + (𝟑𝟑)𝟐𝟐 = (𝟏𝟏 − 𝟑𝟑𝟑𝟑)(𝟏𝟏 + )𝒊𝒊 = 𝟐𝟐𝟐𝟐(𝟏𝟏 + 𝒊𝒊) + (−𝟐𝟐𝟐𝟐)(𝟏𝟏 − 𝟐𝟐 𝟐𝟐 )𝟕𝟕𝟕𝟕 𝟓𝟓𝟓𝟓 = 𝟒𝟒 + 𝟒𝟒𝟒𝟒 = (𝟐𝟐) + (𝟕𝟕) = (𝟐𝟐 − 𝟕𝟕𝟕𝟕)(𝟐𝟐 + = 𝟐𝟐𝒊𝒊𝟐𝟐 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝒊𝒊𝟐𝟐 + −𝟐𝟐𝟐𝟐 + 𝟎𝟎𝟎𝟎 = 𝟐𝟐𝟐𝟐 − 𝟐𝟐 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐 = −𝟒𝟒 = −𝟒𝟒 + ﺘمر ن -4-ﺤﻠﻞ ﻼً ﻤن اﻻﻋداد 𝟖𝟖𝟖𝟖 𝟐𝟐𝟐𝟐, 𝟏𝟏𝟏𝟏𝟏𝟏, 𝟒𝟒𝟒𝟒,اﻟﻰ ﺤﺎﺼﻞ ﺘمر ن -3-اﺜبت ان: ﻀرب ﻋﺎﻤﻠین ﻤن ﺼورة 𝒃𝒃𝒃𝒃 𝒂𝒂 +ﺤیث 𝒃𝒃 𝒂𝒂,ﻋددﯿن ﻨسبیین 𝟏𝟏 𝟏𝟏 𝟖𝟖 )𝟕𝟕𝟕𝟕 𝟖𝟖𝟖𝟖 = 𝟑𝟑𝟑𝟑 + 𝟒𝟒𝟒𝟒 = (𝟔𝟔)𝟐𝟐 + (𝟕𝟕)𝟐𝟐 = (𝟔𝟔 − 𝟕𝟕𝟕𝟕)(𝟔𝟔 + )𝒂𝒂 − = 𝒊𝒊 )𝒊𝒊 (𝟐𝟐 −𝟐𝟐 )𝒊𝒊 (𝟐𝟐 + 𝟐𝟐 𝟐𝟐𝟐𝟐 )𝟒𝟒𝟒𝟒 𝟒𝟒𝟒𝟒 = 𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏 = (𝟓𝟓)𝟐𝟐 + (𝟒𝟒)𝟐𝟐 = (𝟓𝟓 − 𝟒𝟒𝟒𝟒)(𝟓𝟓 + 𝟏𝟏 𝟏𝟏 𝟐𝟐 )𝟐𝟐( 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟒𝟒 = (𝟏𝟏𝟏𝟏) + 𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 = − 𝟐𝟐)𝒊𝒊 (𝟐𝟐 − 𝒊𝒊)𝟐𝟐 (𝟐𝟐 + )𝟐𝟐𝟐𝟐 = (𝟏𝟏𝟏𝟏 − 𝟐𝟐𝟐𝟐)(𝟏𝟏𝟏𝟏 + 𝟏𝟏 𝟏𝟏 )𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 = 𝟐𝟐𝟐𝟐 + 𝟒𝟒 = (𝟓𝟓)𝟐𝟐 + (𝟐𝟐)𝟐𝟐 = (𝟓𝟓 − 𝟐𝟐𝟐𝟐)(𝟓𝟓 + = 𝟐𝟐 − 𝒊𝒊 𝟒𝟒 − 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝒊𝒊 𝟒𝟒 + 𝟒𝟒𝟒𝟒 + 𝟏𝟏 𝟏𝟏 طر ﻘﺔ أﺨرى: = − 𝟏𝟏 𝟒𝟒 − 𝟒𝟒𝟒𝟒 − 𝟏𝟏 𝟒𝟒 + 𝟒𝟒𝟒𝟒 − )𝟔𝟔𝟔𝟔 𝟖𝟖𝟖𝟖 = 𝟒𝟒𝟒𝟒 + 𝟑𝟑𝟑𝟑 = (𝟕𝟕)𝟐𝟐 + (𝟔𝟔)𝟐𝟐 = (𝟕𝟕 − 𝟔𝟔𝟔𝟔)(𝟕𝟕 + 𝟏𝟏 𝟏𝟏 = − )𝟓𝟓𝟓𝟓 𝟒𝟒𝟒𝟒 = 𝟏𝟏𝟏𝟏 + 𝟐𝟐𝟐𝟐 = (𝟒𝟒)𝟐𝟐 + (𝟓𝟓)𝟐𝟐 = (𝟒𝟒 − 𝟓𝟓𝟓𝟓)(𝟒𝟒 + 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 𝟑𝟑 + 3ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ وزاري 2020دور ﺜﺎﻨﻲ ﺘكمیﻠﻲ ﻀﻊ ﺎﻟص ﻐﺔ اﻟﻌدد ﺔ 𝟐𝟐)𝟏𝟏𝟏𝟏( 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟒𝟒 + 𝟏𝟏𝟏𝟏𝟏𝟏 = (𝟐𝟐)𝟐𝟐 + )𝒊𝒊 (𝟑𝟑 + 𝟒𝟒𝟒𝟒)𝟐𝟐 + (𝟓𝟓 − 𝟑𝟑𝟑𝟑)(𝟏𝟏 − )𝟏𝟏𝟏𝟏𝟏𝟏 = (𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏)(𝟐𝟐 + )𝟓𝟓𝟓𝟓 𝟐𝟐𝟐𝟐 = 𝟒𝟒 + 𝟐𝟐𝟐𝟐 = (𝟐𝟐)𝟐𝟐 + (𝟓𝟓)𝟐𝟐 = (𝟐𝟐 − 𝟓𝟓𝟓𝟓)(𝟐𝟐 + )𝒊𝒊 (𝟑𝟑 + 𝟒𝟒𝟒𝟒)𝟐𝟐 + (𝟓𝟓 − 𝟑𝟑𝟑𝟑)(𝟏𝟏 − 𝟐𝟐𝒊𝒊𝟑𝟑 = 𝟗𝟗 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟏𝟏𝟏𝟏𝒊𝒊𝟐𝟐 + 𝟓𝟓 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑𝟑𝟑 + وزاري 2012دور ﺜﺎﻨﻲ ﻀﻊ ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ ﻟﻠﻌدد اﻟمر ب اﻟمﻘدار: 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟏𝟏𝟏𝟏 − 𝟑𝟑 = −𝟓𝟓 + 𝟓𝟓)𝒊𝒊 (𝟏𝟏 + 𝒊𝒊)𝟓𝟓 − (𝟏𝟏 − وزاري 2021دور ﺜﺎﻟث اﺤ ﺎﺌﻲ اﺜبت ان: 𝟓𝟓)𝒊𝒊 (𝟏𝟏 + 𝒊𝒊)𝟓𝟓 − (𝟏𝟏 − 𝟏𝟏𝟏𝟏 = 𝟑𝟑𝒊𝒊 (𝟐𝟐 − 𝒊𝒊) 𝟏𝟏 − 𝒊𝒊𝟐𝟐 𝟐𝟐 − )𝒊𝒊 = (𝟏𝟏 + 𝒊𝒊)𝟒𝟒 (𝟏𝟏 + 𝒊𝒊) − (𝟏𝟏 − 𝒊𝒊)𝟒𝟒 (𝟏𝟏 − 𝟐𝟐 𝟐𝟐 𝟑𝟑𝒊𝒊 𝑳𝑳𝑳𝑳𝑳𝑳 = (𝟐𝟐 − 𝒊𝒊) 𝟏𝟏 − 𝒊𝒊𝟐𝟐 𝟐𝟐 − )𝒊𝒊 = (𝟏𝟏 + 𝒊𝒊)𝟐𝟐 (𝟏𝟏 + 𝒊𝒊) − (𝟏𝟏 − 𝒊𝒊)𝟐𝟐 (𝟏𝟏 − 𝟐𝟐 𝟐𝟐 )]𝒊𝒊= (𝟐𝟐 − 𝒊𝒊)(𝟏𝟏 − [−𝟏𝟏])(𝟐𝟐 − [− )𝒊𝒊 = 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 (𝟏𝟏 + 𝒊𝒊) − 𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 (𝟏𝟏 − )𝒊𝒊 = (𝟐𝟐 − 𝒊𝒊)(𝟏𝟏 + 𝟏𝟏)(𝟐𝟐 + )𝒊𝒊 = [𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏]𝟐𝟐 (𝟏𝟏 + 𝒊𝒊) − [𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟏𝟏]𝟐𝟐 (𝟏𝟏 − 𝟐𝟐 𝟐𝟐 )𝟏𝟏( = 𝟐𝟐(𝟐𝟐 − 𝒊𝒊)(𝟐𝟐 + 𝒊𝒊) = 𝟐𝟐 (𝟐𝟐) + )𝒊𝒊 = [𝟐𝟐𝟐𝟐]𝟐𝟐 (𝟏𝟏 + 𝒊𝒊) − [−𝟐𝟐𝟐𝟐]𝟐𝟐 (𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟏𝟏𝟏𝟏 = ]𝟓𝟓[𝟐𝟐 = )𝒊𝒊 = −𝟒𝟒(𝟏𝟏 + 𝒊𝒊) − (−𝟒𝟒)(𝟏𝟏 − ﺘمﻬیدي 2021اﺤ ﺎﺌﻲ ﻀﻊ ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ ﻨﺎﺘﺞ: )𝒊𝒊 = −𝟒𝟒(𝟏𝟏 + 𝒊𝒊) + 𝟒𝟒(𝟏𝟏 − 𝟐𝟐 𝟐𝟐 𝟖𝟖𝟖𝟖= −𝟒𝟒 − 𝟒𝟒𝟒𝟒 + 𝟒𝟒 − 𝟒𝟒𝟒𝟒 = − 𝒊𝒊𝟐𝟐√ 𝟏𝟏 − √𝟐𝟐𝒊𝒊 − 𝟐𝟐 − وزاري 2017دور اول اﺤ ﺎﺌﻲ اﺜبت ان: 𝟐𝟐 𝟐𝟐 𝒊𝒊𝟐𝟐√ 𝟏𝟏 − √𝟐𝟐𝒊𝒊 − 𝟐𝟐 − 𝟏𝟏 𝟏𝟏 𝟔𝟔− 𝟐𝟐 𝟐𝟐 𝟐𝟐 + 𝟐𝟐 = 𝒊𝒊𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐√𝟐𝟐𝒊𝒊 + 𝟐𝟐𝒊𝒊 − 𝟒𝟒 − 𝟒𝟒√𝟐𝟐𝒊𝒊 + )𝟐𝟐𝟐𝟐 (𝟏𝟏 + )𝟐𝟐𝟐𝟐 (𝟏𝟏 − 𝟐𝟐𝟐𝟐 = 𝑳𝑳𝑳𝑳𝑳𝑳 𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐√𝟐𝟐𝒊𝒊 − 𝟐𝟐 − 𝟒𝟒 − 𝟒𝟒√𝟐𝟐𝒊𝒊 − 𝟏𝟏 𝟏𝟏 + 𝒊𝒊𝟐𝟐√𝟒𝟒 = −𝟏𝟏 − 𝟐𝟐√𝟐𝟐𝒊𝒊 − 𝟐𝟐 − 𝟐𝟐)𝟐𝟐𝟐𝟐 (𝟏𝟏 + 𝟐𝟐𝟐𝟐)𝟐𝟐 (𝟏𝟏 − 𝟏𝟏 𝟏𝟏 𝒊𝒊𝟐𝟐√𝟒𝟒 = −𝟏𝟏 − 𝟐𝟐√𝟐𝟐𝒊𝒊 − 𝟐𝟐 + = 𝟐𝟐 + 𝒊𝒊𝟒𝟒 𝟏𝟏 + 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝒊𝒊𝟒𝟒 𝟏𝟏 − 𝟒𝟒𝟒𝟒 + 𝒊𝒊𝟐𝟐√𝟐𝟐 = −𝟑𝟑 + 𝟏𝟏 𝟏𝟏 = + وزاري 2021دور اول اﺤ ﺎﺌﻲ اﺜبت ان: 𝟒𝟒 𝟏𝟏 + 𝟒𝟒𝟒𝟒 − 𝟒𝟒 𝟏𝟏 − 𝟒𝟒𝟒𝟒 − 𝟏𝟏 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟏𝟏 𝟒𝟒𝟒𝟒 −𝟑𝟑 + 𝟐𝟐 𝟐𝟐𝟐𝟐 = ) 𝒊𝒊 (𝟏𝟏 − 𝒊𝒊)(𝒊𝒊 − 𝟏𝟏)(𝟏𝟏 − 𝟑𝟑 = + 𝟒𝟒𝟒𝟒 −𝟑𝟑 + 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟒𝟒𝟒𝟒 −𝟑𝟑 + 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟒𝟒𝟒𝟒 −𝟑𝟑 + ) 𝟑𝟑𝒊𝒊 𝑳𝑳𝑳𝑳𝑳𝑳 = (𝟏𝟏 − 𝒊𝒊)(𝒊𝒊𝟐𝟐 − 𝟏𝟏)(𝟏𝟏 − = + 𝟐𝟐)𝟒𝟒( (𝟑𝟑)𝟐𝟐 + (𝟒𝟒)𝟐𝟐 (𝟑𝟑)𝟐𝟐 + )]𝒊𝒊= (𝟏𝟏 − 𝒊𝒊)([−𝟏𝟏] − 𝟏𝟏)(𝟏𝟏 − [− 𝟔𝟔−𝟑𝟑 − 𝟒𝟒𝟒𝟒 − 𝟑𝟑 + 𝟒𝟒𝟒𝟒 − = = 𝑹𝑹𝑹𝑹𝑹𝑹 = )𝒊𝒊 = (𝟏𝟏 − 𝒊𝒊)(−𝟐𝟐)(𝟏𝟏 + 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟐𝟐𝟐𝟐 = 𝒊𝒊𝟒𝟒√ = 𝟒𝟒= −𝟐𝟐(𝟏𝟏 + 𝟏𝟏) = √− وزاري 2020دور اول اﺤ ﺎﺌﻲ ﻀﻊ ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ )اﻟجبر ﺔ( ﻨﺎﺘﺞ: 𝒊𝒊 𝒊𝒊 وزاري 2021دور ﺜﺎﻨﻲ اﺤ ﺎﺌﻲ اﺜبت ان: + 𝟏𝟏 𝟏𝟏 𝟒𝟒 𝟐𝟐)𝒊𝒊 (√𝟐𝟐 + 𝒊𝒊)𝟐𝟐 (√𝟐𝟐 − + = 𝒊𝒊 𝒊𝒊 𝟐𝟐𝟐𝟐 𝟐𝟐)𝒊𝒊 (𝟑𝟑 + 𝒊𝒊)𝟐𝟐 (𝟑𝟑 − 𝟐𝟐 + 𝟐𝟐 𝟏𝟏 𝟏𝟏 𝒊𝒊 √𝟐𝟐 + 𝒊𝒊 √𝟐𝟐 − = 𝑳𝑳𝑳𝑳𝑳𝑳 + 𝟐𝟐)𝒊𝒊 (𝟑𝟑 + 𝒊𝒊)𝟐𝟐 (𝟑𝟑 − 𝒊𝒊 𝒊𝒊 𝟏𝟏 𝟏𝟏 = + = + 𝟐𝟐𝒊𝒊 𝟐𝟐 + 𝟐𝟐√𝟐𝟐𝒊𝒊 + 𝒊𝒊𝟐𝟐 𝟐𝟐 − 𝟐𝟐√𝟐𝟐𝒊𝒊 + 𝟐𝟐𝒊𝒊 𝟗𝟗 + 𝟔𝟔𝟔𝟔 + 𝒊𝒊𝟐𝟐 𝟗𝟗 − 𝟔𝟔𝟔𝟔 + 𝒊𝒊 𝒊𝒊 𝟏𝟏 𝟏𝟏 = + = + 𝟏𝟏 𝟐𝟐 + 𝟐𝟐√𝟐𝟐𝒊𝒊 − 𝟏𝟏 𝟐𝟐 − 𝟐𝟐√𝟐𝟐𝒊𝒊 − 𝟏𝟏 𝟗𝟗 + 𝟔𝟔𝟔𝟔 − 𝟏𝟏 𝟗𝟗 − 𝟔𝟔𝟔𝟔 − 𝒊𝒊 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 − 𝒊𝒊 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 + 𝟏𝟏 𝟔𝟔𝟔𝟔 𝟖𝟖 − 𝟏𝟏 𝟔𝟔𝟔𝟔 𝟖𝟖 + = + = + 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 + 𝟐𝟐√𝟐𝟐𝒊𝒊 𝟏𝟏 − 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 − 𝟐𝟐√𝟐𝟐𝒊𝒊 𝟏𝟏 + 𝟔𝟔𝟔𝟔 𝟖𝟖 + 𝟔𝟔𝟔𝟔 𝟖𝟖 − 𝟔𝟔𝟔𝟔 𝟖𝟖 − 𝟔𝟔𝟔𝟔 𝟖𝟖 + 𝟔𝟔𝟔𝟔 𝟖𝟖 − 𝟔𝟔𝟔𝟔 𝟖𝟖 + 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 − 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 + = + = + )𝟔𝟔( (𝟖𝟖) + 𝟐𝟐 𝟐𝟐 )𝟔𝟔( (𝟖𝟖) + 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟔𝟔𝟔𝟔 𝟖𝟖 − 𝟔𝟔𝟔𝟔 𝟖𝟖 + 𝟐𝟐√𝟐𝟐 (𝟏𝟏)𝟐𝟐 + 𝟐𝟐√𝟐𝟐 (𝟏𝟏)𝟐𝟐 + = + 𝒊𝒊𝟐𝟐√𝟐𝟐 𝟏𝟏 − 𝟐𝟐√𝟐𝟐𝒊𝒊 𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏 = + 𝟔𝟔𝟔𝟔 𝟖𝟖 − 𝟔𝟔𝟔𝟔 + 𝟖𝟖 + 𝟏𝟏𝟏𝟏 𝟒𝟒 𝟖𝟖 𝟏𝟏 + 𝟖𝟖 𝟏𝟏 + = = = 𝟏𝟏𝟏𝟏𝟏𝟏 𝟐𝟐𝟐𝟐 𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏 − 𝒊𝒊𝟐𝟐√𝟐𝟐 + 𝟏𝟏 𝟐𝟐 𝒊𝒊𝟐𝟐√𝟐𝟐 + 𝑹𝑹𝑹𝑹𝑹𝑹 = = = 𝟗𝟗 𝟗𝟗 𝟐𝟐 𝟎𝟎𝟎𝟎 = + 𝟗𝟗 4 set by: Sadiq Hussain ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ )𝟖𝟖 −𝟔𝟔𝟔𝟔 + 𝟖𝟖 𝟔𝟔𝟔𝟔 + 𝟖𝟖 −𝟔𝟔𝟔𝟔 + 𝟖𝟖 − (𝟔𝟔𝟔𝟔 + 𝟕𝟕)𝒊𝒊(𝟏𝟏+ = − = وزاري 2021دور ﺜﺎﻨﻲ اﺤ ﺎﺌﻲ ﻀﻊ ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ: 𝟏𝟏𝟏𝟏 𝟗𝟗 + 𝟏𝟏𝟏𝟏 𝟗𝟗 + 𝟏𝟏𝟏𝟏 𝟗𝟗 + 𝟖𝟖 𝟏𝟏𝟏𝟏𝟏𝟏−𝟔𝟔𝟔𝟔 + 𝟖𝟖 − 𝟔𝟔𝟔𝟔 − 𝟖𝟖 − أوﻻً ﺴنﻘوم ﺒت س ط سط اﻟمﻘدار اﻟمطﻠوب = 𝟕𝟕)𝒊𝒊 (𝟏𝟏 + = = 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟑𝟑 )𝒊𝒊 (𝟏𝟏 + 𝒊𝒊)𝟕𝟕 = (𝟏𝟏 + 𝒊𝒊)𝟔𝟔 (𝟏𝟏 + 𝒊𝒊) = (𝟏𝟏 + 𝒊𝒊)𝟐𝟐 (𝟏𝟏 + 𝟏𝟏𝟏𝟏 = 𝟎𝟎 − 𝒊𝒊 𝟑𝟑 𝟐𝟐𝟐𝟐 )𝒊𝒊 = 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝒊𝒊𝟐𝟐 (𝟏𝟏 + ﺃﺳﺌﻠﺔ ﺗﻄﺒﻴﻖ ﳋﻮﺍﺹ ﻣﺮﺍﻓﻖ ﺍﻟﻌﺪﺩ ﺍﳌﺮﻛﺐ )𝒊𝒊 = [𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏]𝟑𝟑 (𝟏𝟏 + )𝒊𝒊 = [𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏]𝟑𝟑 (𝟏𝟏 + ﻤثﺎل -8-اذا ﺎن 𝒊𝒊𝟐𝟐 𝒄𝒄𝟏𝟏 = 𝟏𝟏 + 𝒊𝒊 , 𝒄𝒄𝟐𝟐 = 𝟑𝟑 −ﻓتحﻘق ﻤن: )𝒊𝒊 = [𝟐𝟐𝟐𝟐]𝟑𝟑 (𝟏𝟏 + 𝒊𝒊) = 𝟖𝟖(−𝒊𝒊)(𝟏𝟏 + 𝟖𝟖𝟖𝟖 = −𝟖𝟖𝟖𝟖 − 𝟖𝟖𝒊𝒊𝟐𝟐 = 𝟖𝟖 − ① = 𝟐𝟐𝒄𝒄 𝒄𝒄𝟏𝟏 ± 𝒄𝒄 𝒄𝒄𝟏𝟏 ± 𝟐𝟐 𝟕𝟕 )𝒊𝒊 (𝟏𝟏 + 𝟖𝟖 𝟖𝟖 𝟖𝟖𝟖𝟖 𝟖𝟖 − ② 𝒄𝒄 = 𝟐𝟐𝒄𝒄 × 𝟏𝟏𝒄𝒄 × 𝟏𝟏 𝟐𝟐𝒄𝒄 ⟹ = 𝒊𝒊 = − 𝒊𝒊 = 𝟏𝟏 − 𝟖𝟖 𝟖𝟖 𝟖𝟖 𝟖𝟖 = 𝑳𝑳𝑳𝑳𝑳𝑳 ① 𝒊𝒊 𝒄𝒄𝟏𝟏 + 𝒄𝒄𝟐𝟐 = (𝟏𝟏 + 𝒊𝒊) + (𝟐𝟐 − 𝟐𝟐𝟐𝟐) = 𝟑𝟑 − = 𝒃𝒃𝒃𝒃 𝒂𝒂 +اﺜبت ان 𝒊𝒊𝟐𝟐+ وزاري 2022دور اول اذا ﺎن 𝒊𝒊 = 𝟑𝟑 + 𝟑𝟑 𝒊𝒊𝟏𝟏− 𝟑𝟑 𝟕𝟕 = 𝒃𝒃 𝟐𝟐 𝒂𝒂 + 𝒄𝒄 𝟏𝟏 + 𝒄𝒄 = 𝑹𝑹𝑹𝑹𝑹𝑹 )𝟐𝟐𝟐𝟐 𝟐𝟐 = (𝟏𝟏 + 𝒊𝒊) + (𝟐𝟐 − 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝒊𝒊 = 𝟏𝟏 − 𝒊𝒊 + 𝟐𝟐 + 𝟐𝟐𝟐𝟐 = 𝟑𝟑 + أوﻻً ﻨحﻞ اﻟمﻌﺎدﻟﺔ اﻟمﻌطﺎة 𝒊𝒊 𝟐𝟐 + 𝒄𝒄 = 𝑳𝑳𝑳𝑳𝑳𝑳 )𝟐𝟐𝟐𝟐 𝟏𝟏 − 𝒄𝒄𝟐𝟐 = (𝟏𝟏 + 𝒊𝒊) − (𝟐𝟐 − = 𝒃𝒃𝒃𝒃 𝒂𝒂 + 𝒊𝒊 𝟏𝟏 − 𝟑𝟑𝟑𝟑 = 𝟏𝟏 + 𝒊𝒊 − 𝟐𝟐 + 𝟐𝟐𝟐𝟐 = −𝟏𝟏 + 𝒊𝒊 (𝒂𝒂 + 𝒃𝒃𝒃𝒃)(𝟏𝟏 − 𝒊𝒊) = 𝟐𝟐 + 𝟑𝟑𝟑𝟑 = −𝟏𝟏 − 𝒊𝒊 𝒂𝒂 − 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 + 𝒃𝒃 = 𝟐𝟐 + 𝒄𝒄 𝟏𝟏 − 𝒄𝒄 = 𝑹𝑹𝑹𝑹𝑹𝑹 )𝟐𝟐𝟐𝟐 𝟐𝟐 = (𝟏𝟏 + 𝒊𝒊) − (𝟐𝟐 − 𝒊𝒊 (𝒂𝒂 + 𝒃𝒃) + (−𝒂𝒂 + 𝒃𝒃)𝒊𝒊 = 𝟐𝟐 + )𝟐𝟐𝟐𝟐 = (𝟏𝟏 − 𝒊𝒊) − (𝟐𝟐 + 𝟐𝟐 = 𝒃𝒃 𝒂𝒂 + 𝟏𝟏 = 𝒃𝒃 −𝒂𝒂 + 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟑𝟑𝟑𝟑 = 𝟏𝟏 − 𝒊𝒊 − 𝟐𝟐 − 𝟐𝟐𝟐𝟐 = −𝟏𝟏 − 𝒃𝒃 𝒂𝒂 = 𝟐𝟐 − 𝟏𝟏 𝒂𝒂 = 𝒃𝒃 − = 𝑳𝑳𝑳𝑳𝑳𝑳 ② )𝟐𝟐𝟐𝟐 𝒄𝒄𝟏𝟏 × 𝒄𝒄𝟐𝟐 = (𝟏𝟏 + 𝒊𝒊)(𝟐𝟐 − 𝟏𝟏 𝟐𝟐 − 𝒃𝒃 = 𝒃𝒃 − 𝟒𝟒 = 𝟐𝟐 = 𝟐𝟐 − 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝒊𝒊𝟐𝟐 = 𝟐𝟐 + 𝟐𝟐 −𝒃𝒃 − 𝒃𝒃 = −𝟏𝟏 − 𝟒𝟒 = 𝟑𝟑−𝟐𝟐𝟐𝟐 = − 𝟑𝟑 𝒄𝒄 × 𝟏𝟏 𝒄𝒄 = 𝑹𝑹𝑹𝑹𝑹𝑹 )𝟐𝟐𝟐𝟐 𝟐𝟐 = (𝟏𝟏 + 𝒊𝒊) × (𝟐𝟐 − = 𝒃𝒃 𝟐𝟐 𝟐𝟐 = (𝟏𝟏 − 𝒊𝒊)(𝟐𝟐 + 𝟐𝟐𝟐𝟐) = 𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝒊𝒊𝟐𝟐 = 𝟐𝟐 + 𝟏𝟏 ∵ 𝒂𝒂 = 𝒃𝒃 − 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟒𝟒 = 𝟑𝟑 𝟐𝟐 𝟏𝟏 𝟐𝟐 𝟑𝟑 = 𝒂𝒂 = − 𝟏𝟏 = − ﻤثﺎل -11-اذا ﺎن 𝒊𝒊𝟐𝟐 𝒄𝒄𝟐𝟐 = 𝟏𝟏 + 𝒊𝒊 , 𝒄𝒄𝟏𝟏 = 𝟑𝟑 −ﻓتحﻘق ﻤن: 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟏𝟏𝒄𝒄 𝟏𝟏𝒄𝒄 𝒂𝒂 𝟐𝟐 𝟑𝟑 اﻵن ﻨثبت إن 𝟕𝟕 = 𝟑𝟑𝒃𝒃 + = 𝟐𝟐𝒄𝒄 𝟐𝟐𝒄𝒄 𝟑𝟑 𝟑𝟑 𝟑𝟑 𝟏𝟏 𝟑𝟑 𝟑𝟑 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟐𝟐 𝒂𝒂 + 𝒃𝒃 = 𝟐𝟐 + 𝟏𝟏𝒄𝒄 𝟐𝟐𝟐𝟐 𝟑𝟑 − 𝒊𝒊 𝟑𝟑 − 𝟐𝟐𝟐𝟐 𝟏𝟏 − 𝟐𝟐 𝟐𝟐 = = 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟏𝟏 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 𝟕𝟕 𝟐𝟐𝒄𝒄 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝟐𝟐 = 𝟐𝟐 = = 𝟐𝟐 + 𝟐𝟐𝒊𝒊𝟐𝟐 𝟑𝟑 − 𝟑𝟑𝟑𝟑 − 𝟐𝟐𝟐𝟐 + 𝟖𝟖 𝟖𝟖 𝟖𝟖 𝟐𝟐 = 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟕𝟕 = 𝟐𝟐)𝟏𝟏( (𝟏𝟏)𝟐𝟐 + وزاري 2022دور ﺜﺎﻨﻲ اﺤ ﺎﺌﻲ ﻀﻊ ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ: 𝟐𝟐 𝟑𝟑 − 𝟓𝟓𝟓𝟓 − 𝟓𝟓𝟓𝟓 𝟏𝟏 − = = 𝟐𝟐)𝒊𝒊 (𝟏𝟏 + 𝟐𝟐)𝒊𝒊 (𝟏𝟏 − 𝟏𝟏 𝟏𝟏 + 𝟐𝟐 − 𝟐𝟐)𝟐𝟐𝟐𝟐 (𝟏𝟏 + 𝟐𝟐𝟐𝟐)𝟐𝟐 (𝟏𝟏 − 𝟓𝟓 𝟏𝟏 𝟓𝟓 𝟏𝟏 𝟐𝟐 𝒊𝒊 = − 𝒊𝒊 = + )𝒊𝒊 (𝟏𝟏 + 𝟐𝟐)𝒊𝒊 (𝟏𝟏 − 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟐𝟐 − 𝟐𝟐𝟐𝟐 𝟏𝟏 𝟑𝟑 − 𝒄𝒄 𝒊𝒊 𝟑𝟑 + 𝟐𝟐𝟐𝟐 𝟏𝟏 + 𝟐𝟐)𝟐𝟐𝟐𝟐 (𝟏𝟏 + 𝟐𝟐𝟐𝟐)𝟐𝟐 (𝟏𝟏 − = 𝑹𝑹𝑹𝑹𝑹𝑹 = = 𝟐𝟐𝒊𝒊 𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝒄𝒄 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 + = − 𝟐𝟐 𝟑𝟑 + 𝟑𝟑𝟑𝟑 + 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝒊𝒊𝟐𝟐 𝟑𝟑 + 𝟓𝟓𝟓𝟓 − 𝟐𝟐𝒊𝒊𝟒𝟒 𝟏𝟏 + 𝟒𝟒𝟒𝟒 + 𝟒𝟒𝒊𝒊𝟐𝟐 𝟏𝟏 − 𝟒𝟒𝟒𝟒 + = = 𝟏𝟏 𝟏𝟏 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟐𝟐)𝟏𝟏( (𝟏𝟏)𝟐𝟐 + 𝟏𝟏 𝟏𝟏 + = − 𝟒𝟒 𝟏𝟏 + 𝟒𝟒𝟒𝟒 − 𝟒𝟒 𝟏𝟏 − 𝟒𝟒𝟒𝟒 − 𝟓𝟓 𝟏𝟏 𝟓𝟓𝟓𝟓 𝟏𝟏 + 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐− = 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝒊𝒊 = + = − 𝟐𝟐 𝟐𝟐 𝟐𝟐 𝟒𝟒𝟒𝟒 −𝟑𝟑 + 𝟒𝟒𝟒𝟒 −𝟑𝟑 − وزاري 2018دور ﺜﺎﻨﻲ اﺤ ﺎﺌﻲ اذا ﻋﻠمت ان 𝒊𝒊 𝒙𝒙 = 𝟖𝟖 −و ﺎن 𝟐𝟐𝟐𝟐 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟒𝟒𝟒𝟒 −𝟐𝟐𝟐𝟐 −𝟑𝟑 + = − 𝒊𝒊 𝒚𝒚 = 𝟐𝟐 +ﺘحﻘق ﻤن ان 𝒚𝒚 ∙ 𝒙𝒙 = 𝒙𝒙𝒙𝒙 𝟒𝟒𝟒𝟒 −𝟑𝟑 + 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟒𝟒𝟒𝟒 −𝟑𝟑 − 𝟒𝟒𝟒𝟒 −𝟑𝟑 + 𝟐𝟐𝒊𝒊𝟖𝟖 −𝟔𝟔𝒊𝒊 − 𝟐𝟐𝒊𝒊𝟖𝟖 𝟔𝟔𝟔𝟔 − = − ) 𝟐𝟐𝟒𝟒( (−𝟑𝟑)𝟐𝟐 + (𝟒𝟒𝟐𝟐 ) (−𝟑𝟑)𝟐𝟐 + 5ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ 𝟐𝟐 )𝒊𝒊 𝑳𝑳𝑳𝑳𝑳𝑳 = (𝒙𝒙𝒙𝒙) = (𝟖𝟖 − 𝒊𝒊)(𝟐𝟐 + = 𝒙𝒙 𝟏𝟏= − 𝟐𝟐− ) 𝟐𝟐𝒊𝒊 = (𝟏𝟏𝟏𝟏 + 𝟖𝟖𝟖𝟖 − 𝟐𝟐𝟐𝟐 − ﺘمر ن -2-ﺠد ق مﺔ ﻞ ﻤن 𝒙𝒙 𝒚𝒚,اﻟحق ﻘیتین اﻟﻠتین ﺘحﻘﻘﺎن )𝟔𝟔𝟔𝟔 = (𝟏𝟏𝟏𝟏 + 𝟔𝟔𝟔𝟔 + 𝟏𝟏) = (𝟏𝟏𝟏𝟏 + اﻟمﻌﺎدﻻت اﻻﺘ ﺔ: 𝟔𝟔𝟔𝟔 = 𝟏𝟏𝟏𝟏 − )𝟐𝟐𝟐𝟐 𝒂𝒂) 𝒚𝒚 + 𝟓𝟓𝟓𝟓 = (𝟐𝟐𝟐𝟐 + 𝒊𝒊)(𝒙𝒙 + )𝒊𝒊 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒙𝒙 ⋅ 𝒚𝒚 = (𝟖𝟖 − 𝒊𝒊) ⋅ (𝟐𝟐 + 𝒊𝒊) = (𝟖𝟖 + 𝒊𝒊)(𝟐𝟐 − 𝟐𝟐 𝒊𝒊𝟐𝟐 𝒚𝒚 + 𝟓𝟓𝟓𝟓 = 𝟐𝟐𝒙𝒙 + 𝟒𝟒𝟒𝟒𝟒𝟒 + 𝒙𝒙𝒙𝒙 + 𝟐𝟐 𝟏𝟏 = 𝟏𝟏𝟏𝟏 − 𝟖𝟖𝟖𝟖 + 𝟐𝟐𝟐𝟐 − 𝒊𝒊𝟐𝟐 = 𝟏𝟏𝟏𝟏 − 𝟔𝟔𝒊𝒊 + 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟔𝟔𝟔𝟔 = 𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓𝟓𝟓 𝒚𝒚 + 𝟓𝟓𝟓𝟓 = 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟐𝟐 + وزاري 2019دور ﺜﺎﻟث اﺤ ﺎﺌﻲ اذا ﺎن 𝟐𝟐)𝟐𝟐𝟐𝟐 𝒚𝒚 = ، 𝒙𝒙 = (𝟑𝟑 − 𝟐𝟐 𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟓𝟓𝟓𝟓 = 𝟓𝟓 𝒊𝒊𝟑𝟑− 𝟏𝟏 = 𝒙𝒙 ،ﺠد 𝒚𝒚 𝒙𝒙,ﺎﻟص ﻐﺔ اﻟﻌﺎد ﺔ ،ﺜم اﺜبت ان: 𝒊𝒊𝟏𝟏+ 𝟎𝟎 = 𝟐𝟐 ∵ 𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝟐𝟐 = 𝟐𝟐(𝟏𝟏)𝟐𝟐 − 𝟐𝟐 = 𝟐𝟐 − 𝒚𝒚 𝒙𝒙 + 𝒚𝒚 = 𝒙𝒙 + 𝟐𝟐 𝟏𝟏 𝒃𝒃) 𝟖𝟖𝟖𝟖 = (𝒙𝒙 + 𝟐𝟐𝟐𝟐)(𝒚𝒚 + 𝟐𝟐𝟐𝟐) + 𝒙𝒙 = ( 𝟑𝟑 − 𝟐𝟐𝟐𝟐 ) = 𝟗𝟗 𝟒𝟒 − 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟒𝟒𝒊𝒊𝟐𝟐 = 𝟗𝟗 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟓𝟓 − 𝟏𝟏 𝟖𝟖𝟖𝟖 = (𝒙𝒙 + 𝟐𝟐𝟐𝟐)(𝒚𝒚 + 𝟐𝟐𝟐𝟐) + 𝟑𝟑 − 𝒊𝒊 𝟑𝟑 − 𝒊𝒊 𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝒊𝒊 𝟑𝟑 − 𝟑𝟑𝟑𝟑 − 𝒊𝒊 + 𝟏𝟏 𝟖𝟖𝟖𝟖 = 𝒙𝒙𝒙𝒙 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟒𝟒𝒊𝒊𝟐𝟐 + = 𝒚𝒚 = = 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝟏𝟏 𝟏𝟏 + 𝟏𝟏 𝟖𝟖𝟖𝟖 = 𝒙𝒙𝒙𝒙 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟒𝟒 + 𝟒𝟒𝟒𝟒 𝟑𝟑 − 𝟒𝟒𝟒𝟒 − 𝟏𝟏 𝟐𝟐 − 𝒊𝒊)𝟐𝟐𝟐𝟐 𝟎𝟎 + 𝟖𝟖𝟖𝟖 = (𝒙𝒙𝒙𝒙 − 𝟑𝟑) + (𝟐𝟐𝟐𝟐 + = = 𝟐𝟐𝟐𝟐 = 𝟏𝟏 − 𝟐𝟐 𝟐𝟐 𝟎𝟎 = 𝟑𝟑 𝒙𝒙𝒙𝒙 − 𝟖𝟖 = 𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐 + )𝟏𝟏𝟏𝟏𝟏𝟏 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝒙𝒙 + 𝒚𝒚 = (𝟓𝟓 − 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏 − 𝟐𝟐𝟐𝟐) = (𝟔𝟔 − 𝟑𝟑 = 𝒙𝒙𝒙𝒙 𝟒𝟒 = 𝒚𝒚 𝒙𝒙 + 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟔𝟔 + 𝟑𝟑 )𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒙𝒙 + 𝒚𝒚 = (𝟓𝟓 − 𝟏𝟏𝟏𝟏𝟏𝟏) + (𝟏𝟏 − = 𝒙𝒙 𝒚𝒚 𝒙𝒙 = 𝟒𝟒 − 𝒚𝒚 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟓𝟓 + 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏 + 𝟐𝟐𝟐𝟐 = 𝟔𝟔 + 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟑𝟑 𝒚𝒚 ∴ = 𝟒𝟒 − 𝒚𝒚 وزاري 2020دور ﺜﺎﻨﻲ ﺘكمیﻠﻲ اﺤ ﺎﺌﻲ اذا ﺎن )𝒊𝒊 𝒙𝒙 = (𝟑𝟑 + 𝟑𝟑 = 𝟐𝟐𝒚𝒚 𝟒𝟒𝟒𝟒 − 𝒚𝒚 = (𝟏𝟏 − 𝒊𝒊) ،ﻓتحﻘق ﻤن ان𝒙𝒙 ∙ 𝒚𝒚 = 𝒙𝒙 ∙ 𝒚𝒚 : 𝟎𝟎 = 𝟑𝟑 𝒚𝒚𝟐𝟐 − 𝟒𝟒𝟒𝟒 + ) 𝟐𝟐𝒊𝒊 𝑳𝑳𝑳𝑳𝑳𝑳 = (𝒙𝒙 ∙ 𝒚𝒚) = (𝟏𝟏 − 𝒊𝒊)(𝟑𝟑 + 𝒊𝒊) = (𝟑𝟑 + 𝒊𝒊 − 𝟑𝟑𝟑𝟑 − 𝟎𝟎 = )𝟏𝟏 (𝒚𝒚 − 𝟑𝟑)(𝒚𝒚 − 𝟐𝟐𝟐𝟐 = (𝟑𝟑 − 𝟐𝟐𝟐𝟐 + 𝟏𝟏) = (𝟒𝟒 − 𝟐𝟐𝟐𝟐) = 𝟒𝟒 + 𝟎𝟎 = 𝟑𝟑 𝒚𝒚 −أﻤﺎ 𝟎𝟎 = 𝟏𝟏 𝒚𝒚 −أو )𝒊𝒊 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝒙𝒙 ⋅ 𝒚𝒚 = (𝟏𝟏 − 𝒊𝒊) ⋅ (𝟑𝟑 + 𝒊𝒊) = (𝟏𝟏 + 𝒊𝒊)(𝟑𝟑 − 𝟑𝟑 = 𝒚𝒚 𝟏𝟏 = 𝒚𝒚 𝟏𝟏 = 𝟑𝟑 − 𝒊𝒊 + 𝟑𝟑𝟑𝟑 − 𝒊𝒊𝟐𝟐 = 𝟑𝟑 + 𝟐𝟐𝟐𝟐 + 𝒚𝒚 ∵ 𝒙𝒙 = 𝟒𝟒 − 𝒚𝒚 ∵ 𝒙𝒙 = 𝟒𝟒 − 𝑳𝑳𝑳𝑳𝑳𝑳 = 𝟐𝟐𝟐𝟐 = 𝟒𝟒 + 𝟏𝟏 = )𝟑𝟑( 𝒙𝒙 = 𝟒𝟒 − 𝟑𝟑 = )𝟏𝟏( 𝒙𝒙 = 𝟒𝟒 − ﺃﺳﺌﻠﺔ "ﺟﺪ ﻗﻴﻢ 𝒚𝒚 "𝒙𝒙, 𝒊𝒊 𝟏𝟏 − )𝒄𝒄 𝟐𝟐)𝟐𝟐𝟐𝟐 + (𝒙𝒙 + 𝒚𝒚𝒚𝒚) = (𝟏𝟏 + 𝒊𝒊 𝟏𝟏 + ﻤثﺎل -3-ﺠد ق مﺔ ﻞ ﻤن 𝒚𝒚 𝒙𝒙 ,اﻟحق ﻘیتین اﻟﻠتین ﺘحﻘﻘﺎن اﻟمﻌﺎدﻟﺔ 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝒊𝒊𝟒𝟒 + (𝒙𝒙 + 𝒚𝒚𝒚𝒚) = 𝟏𝟏 + 𝟒𝟒𝟒𝟒 + ﻓﻲ ﻞ ﻤمﺎ ﺄﺘﻲ: 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝒊𝒊 𝟏𝟏 − 𝟐𝟐𝟐𝟐 + 𝒊𝒊)𝟏𝟏 ① 𝟐𝟐𝒙𝒙 − 𝟏𝟏 + 𝟐𝟐𝟐𝟐 = 𝟏𝟏 + (𝒚𝒚 + 𝟒𝟒 + 𝒙𝒙 + 𝒚𝒚𝒚𝒚 = 𝟏𝟏 + 𝟒𝟒𝟒𝟒 − 𝟏𝟏 = 𝟏𝟏 𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟐𝟐 = 𝒚𝒚 + 𝟏𝟏 𝟏𝟏 + 𝟏𝟏 𝟏𝟏 − 𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟐𝟐𝟐𝟐 = 𝟏𝟏 + 𝒚𝒚 = 𝟏𝟏 𝟐𝟐 − 𝟒𝟒𝟒𝟒 + 𝒙𝒙 + 𝒚𝒚𝒚𝒚 = −𝟑𝟑 + 𝟐𝟐 = 𝟐𝟐𝟐𝟐 𝟏𝟏 = 𝒚𝒚 𝟐𝟐 𝒊𝒊𝟐𝟐− 𝟏𝟏 = 𝒙𝒙 𝟒𝟒𝟒𝟒 + 𝒙𝒙 + 𝒚𝒚𝒚𝒚 = −𝟑𝟑 + 𝟖𝟖𝟖𝟖𝟖𝟖 ② 𝟑𝟑𝟑𝟑 + 𝟒𝟒𝟒𝟒 = 𝟐𝟐 + 𝟐𝟐 𝟐𝟐 = 𝟑𝟑𝟑𝟑 𝟖𝟖𝟖𝟖 = 𝟒𝟒 𝟒𝟒𝟒𝟒 −𝒊𝒊 + 𝒙𝒙 + 𝒚𝒚𝒚𝒚 = −𝟑𝟑 + 𝟒𝟒𝟒𝟒 𝒙𝒙 + (𝒚𝒚 − 𝟏𝟏)𝒊𝒊 = −𝟑𝟑 + 𝟐𝟐 𝟏𝟏 𝟒𝟒 = 𝒙𝒙 = = 𝒚𝒚 𝟑𝟑𝒙𝒙 = − 𝟒𝟒 = 𝟏𝟏 𝒚𝒚 − 𝟑𝟑 𝟐𝟐 𝟖𝟖 𝟑𝟑𝟑𝟑 ③ (𝟐𝟐𝟐𝟐 + 𝟏𝟏) − (𝟐𝟐𝟐𝟐 − 𝟏𝟏)𝒊𝒊 = −𝟖𝟖 + 𝟓𝟓 = 𝟏𝟏 𝒚𝒚 = 𝟒𝟒 + 𝟖𝟖𝟐𝟐𝟐𝟐 + 𝟏𝟏 = − 𝟑𝟑 = )𝟏𝟏 −(𝟐𝟐𝟐𝟐 − 𝟏𝟏 𝟐𝟐𝟐𝟐 = −𝟖𝟖 − 𝟑𝟑 = 𝟏𝟏 −𝟐𝟐𝟐𝟐 + 𝟗𝟗𝟐𝟐𝟐𝟐 = − 𝟏𝟏 −𝟐𝟐𝟐𝟐 = 𝟑𝟑 − 𝟗𝟗− = 𝒚𝒚 𝟐𝟐 = 𝟐𝟐𝟐𝟐− 𝟐𝟐 6 set by: Sadiq Hussain ﺇﻋﺪﺍﺩ ﺍﻻﺳﺘﺎﺫ :ﺻﺎﺩﻕ ﺣﺴﲔ ﺍﻟﻔﺼﻞ ﺍﻻﻭﻝ :ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ | ﳎﻤﻮﻋﺔ ﺍﻻﻋﺪﺍﺩ ﺍﳌﺮﻛﺒﺔ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻴﻬﺎ 𝟏𝟏𝟏𝟏𝒚𝒚 = − 𝒊𝒊 𝟐𝟐 − 𝒊𝒊 𝟑𝟑 − 𝟏𝟏 )𝒅𝒅 𝒙𝒙 + = 𝒚𝒚 وزاري 2017دور اول اﺤ ﺎﺌﻲ -ﺨﺎرج ﺠد ق مﺔ 𝑹𝑹 ∈ 𝒚𝒚 𝒙𝒙,اذا 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟐𝟐 + 𝒊𝒊 𝒊𝒊𝟏𝟏− 𝒊𝒊 𝟐𝟐 − 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟑𝟑 − 𝒊𝒊 𝟐𝟐 − 𝒊𝒊𝟏𝟏 − ﻋﻠمت ان𝒙𝒙 + (𝟏𝟏 + 𝟑𝟑𝟑𝟑)𝟐𝟐 𝒚𝒚 = (𝟏𝟏 − 𝒊𝒊)(𝟏𝟏 + 𝟑𝟑𝟑𝟑) : 𝒙𝒙 + = 𝒚𝒚 𝒊𝒊𝟏𝟏+ 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟐𝟐 + 𝒊𝒊 𝟐𝟐 − 𝒊𝒊𝒊𝒊 − 𝒊𝒊 𝟏𝟏 − 𝟐𝟐 𝟐𝟐 )𝟑𝟑𝟑𝟑 𝒙𝒙 + (𝟏𝟏 + 𝟑𝟑𝟑𝟑)𝟐𝟐 𝒚𝒚 = (𝟏𝟏 − 𝒊𝒊)(𝟏𝟏 + 𝒊𝒊 𝟐𝟐 − 𝟐𝟐𝟐𝟐 − 𝒊𝒊 + 𝒊𝒊 𝟔𝟔 − 𝟑𝟑𝟑𝟑 − 𝟐𝟐𝟐𝟐 + 𝒊𝒊− 𝒊𝒊 𝟏𝟏 + 𝒙𝒙 + 𝟐𝟐 = 𝒚𝒚 𝒊𝒊 𝟏𝟏 − 𝒊𝒊 𝟏𝟏 − 𝟏𝟏 𝟏𝟏 + 𝟏𝟏 𝟒𝟒 + 𝒊𝒊− 𝒚𝒚 𝟐𝟐𝒊𝒊𝟗𝟗 𝒙𝒙 + 𝟏𝟏 + 𝟔𝟔𝟔𝟔 + 𝟏𝟏 𝟐𝟐 − 𝟑𝟑𝟑𝟑 − 𝟏𝟏 𝟔𝟔 − 𝟓𝟓𝟓𝟓 − 𝒊𝒊− 𝒊𝒊 𝟏𝟏 + 𝒊𝒊 𝟏𝟏 − 𝒙𝒙 + = 𝒚𝒚 𝟐𝟐𝒊𝒊𝟑𝟑 = 𝟏𝟏 + 𝟑𝟑𝟑𝟑 − 𝒊𝒊 − 𝟐𝟐