M1109 Analysis Course Slides PDF
Document Details
Uploaded by MerryTropicalIsland
Lebanese University
2023
Ibrahim ZALZALI
Tags
Related
- RTQF Level 4 Fundamental Mathematics Analysis Past Paper PDF 2022
- Real Analysis DPP-32 PDF
- Math 152 Analysis-1 PDF
- Real Analysis Past Paper 2015 PDF
- Essential Mathematics for Economic Analysis (4th Edition) PDF
- BSc Semester 5 Mathematics Paper II (C) Differential Geometry & Tensor Analysis Exam 2023 PDF
Summary
These are course slides from a mathematics analysis course at the Lebanese University. The materials cover topics in real numbers, inequalities, and absolute value.
Full Transcript
Université Libanaise Faculté des sciences Section I Analyse M1109 Cours-Slides Année 2023-2024 Ibrahim ZALZALI ...
Université Libanaise Faculté des sciences Section I Analyse M1109 Cours-Slides Année 2023-2024 Ibrahim ZALZALI !'EF G!HIJKHLNMO) PL 5DQ @;RK@ 1A+6S @T/@UR= 1A+;& @UR & V @ S R< = W V @URXW 1AY < 0 T Q Y < @ & @ S , W 0 =D< ,6Z/Z @ S V @ 0 < VU[\,6S 0 W V$]8Y/0 @^RKWNT V^_ < 0 @ Z;, &aR` B baced7fDcXg h/i^h6jAk8lm n g oDh;pPqPm g i^h a≤b ⇔a−b ≤ !"#$ C( @UW 9 ( aa ≤≤ bb @UW cb ∈≤ Rc ⇒,/S = &aR +a c≤≤c rb + c r st& @ Y ?;@ ` a − c = (a − b) + (b − c) = (a − b) + (b − c) ≤ B ( %'&)( * + &-,/./0 1 243'56273'58* v ( a ≤ b @UW c ≤ d ,/S = & R a + c ≤ b + d ( u u | {z } | {z } ≤ ≤ st& @ Y ?;@ ` 9;:#= ?;@ 1A+ & @A9/B/9DC a + c − (b + d) = (a − b) + (c − d) = (a − b) + (c − d) ≤ B( w ( a ≤ b @UWB ≤ cC ⇒ acC ≤ bc ( | {z } | {z } u u ≤ ≤ : ( B ¦ x ¥§X¨'¦ ¥£ ¤^¥>¦8© ª>§« ¨K« ¬F¢ª>¨¤ |x| ;¤K®7¢>«P©>£¯ Ù8Ú\Û6ÜeÝ/Þ Ý Û C ( ß = 0 W α > B (Éà =DW & @ &t]8Y @ ` èUö éêí-êeï-ëì ì ëí-ì ì/ô îí éeïô ï-ì ð ï-ô ï ôUî^ñeé-ò^ï ó ï-ô ò ïé õ ù R 0 x≥B ; á â>ã |x| ≤ α ⇔ −α ≤ x ≤ α ä ñ)÷-ø òXø ø ÷ áeå>ã α ≤ |x| ⇔ x ≤ −α æ/ç x ≥ α ä úDí ð ö ï-ô ø ïí ò ö ñ û ñ ö ü- ý û ï ý) þ í þ)ö ñû ï ÿ y ax + bx + c ( x 0 x 00 x0 < x0 |x| = x ° = R 0 x≤B. √ x −x 9 ( à =Dã æ "!/#ç %$ α ≤ |x| ⇔ x ≤ −α æ6ç x ≥ α≤ä x ≤ α ä w ( |x|xy−| =y ||x|= |y× |y−|x|( áeå>ã ≥ α ⇔ x & ≥ α& ⇔ x & − α& ≥ ' ⇔ x ≤ −α æ6ç x ≥ α ä : ( |x|° = x ° ( 9 (à =D=D< * V!s (n) (7ßP04` d7m Ä\iUg d7o C ( s @URKWÑ? & ,;0 /P@UW C ($ß = 0 W S(n) = C + 9 + v + · · · + n ( 9 ( Z = (nY/u& )WX= Y W n ∈ N , R 04S Q =DYã LPâ M O M s C @URKWÑ? & ,/0 / ∗ C ( á â>ã S( P )ç =# PNS(Z S(P ),Q )S(=Q )P ³ ´µmHr |m n ≥ j#} 89 ;:A@& B> CBYFZDFE6[ \ ]=G5H \IJ^`H _=KLGNacb M5d)efOQ_?P RQg h5PejH iWST^ \H h-I OTe-k-O)iFIVb _JU?l&^9K _jIWeR)IJm-H KLn h)GLl=X o pf_jn lBq-dfh5\j^&_jeFaLo=[ Z=g h5eji ^W\ h5e-r s \ f (x) ^&_jejapf_jn l ` [ h)n l q-df_ x ^`_Fejapj_jn l a k-h-etuifn \ ^9Z)[ h)n l vw D x`R)IJH KLG)yyuz5xP O)yP H STH I O)y lim f (x) = `. x→a ! " { |5h }Fej~JiW )~f&| )~ f u 9 }j~u | | +c~f| ` f~ a )j F ` W+9}F~f| )}uF [ \ ]=\ ^&__FnejZ)m euZF^BdFif[ Zf_?[ \ ]=_W^\ ^`aF_=_Vac[ b\ d)]=e \ _B^&_g h-Veja5iW^n h-\ h-\ ^&e=__j_jeTe d)aerTej9h-dj]=q5 dfn _j_ [5aiJZf le \ k-h-ejZjn [ _aF_ lW\)_J^9l_jd)[ _j]B_Feu^lW\ lim f (x) = lim f (x) = ` r #$&% ' ()$+*-,-. /10324506247' lim f (x) = ` x→a x→a+ x→a− { | ju}JB ~u| ~u f g u 9 `f~WfW | | +W ` m f~ a )j F lim (f (x) + g(x)) = ` + m lim (f (x)g(x)) = `m; f (x ) ` + m 6= § ¨ F©Vª=`-«j&¡¬=&)®5¯u9¢ £-°¤-±¥)® ¦ ² ³B¡«J´?¢ £)µ ¬j¥)¶)F·W &«j² ³=µ ¬j·J«J´=¸ ¾6¿ ÀJÁ&ÂTÃuÁÄ ÃfÅÆ Ç=È`¿JÉ¿JÁ&Ç=Ê ÃJÉ Å3ÇÂWÇ=Ë&Ç lim = , x→a x→a x →a g (x ) m ÄÍÌuÀÍ ÈLÇ ÂWÎÇÔË`ÏÇWÑ ÅÏ ÀTÑ Ä ÁÇcÇÕ ÕFÐ ÇÖf¿&ÃfÄ¿WÉ)Í Ë&ÀÀJÈÏ ËWÂf¿WÑ Ï É ÇWÇ=ÉFË`ÒfÇ`¿JÈ3Ó Ñ ÏÏÑ Å ÁJÑÓ ÄÌÇ`È`À Î I ∞ − ∞¹ I » I º × ∞¹ »¼ ÀÑ ÏjÈ Ä+Ê ÀJ¿Ë`¿&Ç&ÄÔÈ`ÀJÎjÍJÒjÍW¿&Ï ÇÑ ÒjÏ¿&Ó ÃfÇWÉÁ ÂfÐWÓÀ ÀJ¿`Ð Ä`ÃuÉ Ñ Ç&ÉcÈÍWÄ Ï ¿Ç`ËWÈ7×WÄ ÁWÀ ÑÉ ÒjÂF¿&Ø Ç`ÈÃf¿ I ∞ ∞½ 89 ÙÚÜÛ6ÝÞ ß à3áãâ7äæåÔâèçcÞ9áé6ê3ß êÔë ä)Þ9ìèâLíîå âäÜï â ì3åÔê3ßuáâ7ä 89 cb ! " V $" ^ n$ n f (t) = ln(t) [x, x + ] a Á É É O 1 n è É S p Á ¾ n ¾ a Á £ ( ( À U ½ Æ ¾nÁ n5 < ln(x + ) − ln x <. ¿8½(! Ã8À(½;¾$ľ8Á (c, f (c)) ÃaÁFÀ n&(É É É SÉ O a c c ∈ ]a, b[ d 3 % ^ +x x É Æ 1¾$Ľ;¾¾nÅ8 L Ë 5 c b x I f (t) = ln(t) T %O$ [x, + x] ® ^^ n$¯$ O$ I ]x, + x[ f 0 (t) = ° ^V l±²L³6% u $ ^nV $6 nt nCEDBFrGIHJLKWA\NIArPsQLSSrHGVU PPALKMALXC%PtY4XIU P\[^]`_saub >= @?BA>CEDF"GIHJLKMAMNOA"PRQSSBHTGVU PPAIKWALXC. 4 56$3 1 1 7 1 *8! '#7*9::9;'#7#8, ` X X $8a f (x) g (x) = arctan x < C^ x= , =&>@? A BC >@DFE +b d π C ^ = arctan − arctan c =. −b " "! #$&%'#)(' *! #$"( (,+-#! ! '# e '302L*1 2$31 *! %G'#L%]#L(N P % (i 'j R %GH(+&#! I'3 JK('#L2 Cfhg x +∞, f x 6= Df =] − ∞, [∪] + ∞[. l.6/0*1 231 0 +x πd k π dπ f (x) Cf = lim arctan − arctan x = − − = −. x→+∞ −x. MN*7(O! P8 0 % 2L*1 2$31 "$#QI'%,*#L +x R m #)#7(8(3! f (x) u= −x π d I'3 T arctan x + x< ; T +x 0 T S +x )T U arctan 0 = T = ( T −x()T U −x u −x = l f 0 (x) = +( +x ) U = . dπ I'3 + uS + T +x S + xS −x −x ( −x )U arctan x − x>. >?@ BAC DFLGPHI0K FLGåI0N(K OFGFLQæRXI0N K STVXWçK!GPZ[VN9WhVXW >?@ BAC DFGHJI0K FLGMI0N K OFLGPFLQ,R@I0N(K SUTPVXWYK!G[Z[VN\W1VXW n$opLq rs rp «L¬8¬$® p8{q@¯Lprp y y pr wx° y ¬ x,y pp ° yªw±,y p x {ph²8¬8q@pGo8p8³²$® ph² w {$q | tu vhwx,y q p8q@z{p"| √ t ~ f (´ ) = arctan ´ + ~ arctan = t π uNµ ¬8q@r wx8°:¶ z{p x,y } x=´ ∀x ∈ R } arctan x + ~ arctan π ~ +x −x = ~ 6 L$ ]8" arctan(√ − ) = π pt π · ∀x ∈ R, arctan x + ~ arctan( + x − x) = ?¸ 6L$ h 8$ 8$-$ ~ tan & π u n x ¯ ¶ ¯{s q p]z{p"| √ t ,G ) ~ arctan( ~ − ) = π h ,G 8@8" ∀x ∈ R arctan x + arctan √ + x − x = π $$ ] $ 8, √ π¹ (?) x = $ arctan( − )= 8G x 7→ f (x) = arctan x + arctan( + x − x) √ G : 8G f : $8 LL ]$ R h) 6 h$,$ ]" √ − )= π arctan( √¦ + x§ √¤ x √¦ x− √ +x ¥ + x§ º-6 8 G π¹ hL$ ª f 0 (x) = ¡+ x ¢ + £ − ¡ = ¡ + √ π¹ √ √ − )= − ¡ + ( ¡ + x ¢ − x) ¢ ¡ + x¢ ¡ + x¢ − x ¡ + x¢ arctan( tan = ¡ √ = ¡ +√ ¡ + x¢ × x− + x¢ ¡ + x¢ = ¨. + x¢ − x ¡ ¡ ¡ © 8G "$8]LL ,6$ 8L H, ª 8 ;L HG f R \]$^_ `]a cbedgfUa `]a hz ixi;j k r q i;j lj m_nr o j kr p;qsr tuojv ;rDi k_q {|nruoxqkwDy ruz i; j {x r {|r v r n kz j v j k w!}~n iuk w|N o t y sn t o r n w f :R→R f ty r k_q n {|i;z nu;v r o r o r w l n x= ! " ##$&%'&(!)+*,.-.%/- )+*'01324 f (x) = Pn (x) + x n ε(x) Pn (x) ;l ≤n {|i;z nun;v o|wDj t y z rur z i;o {xr {| r r~v k k~r rn k i z nsj v kj kj i w_n$o t q q n y ri; j ijnsns tk j i r n o rr n r&q n {|i;{|ji;n j k n l kr k_q n r t {x{s ixj v_t kj i n lim ε(x) = 5768 9;: @ x→ sr v {xz r A$BDCE FB.G+H+I JLKNM$OPK7M$OQE i n k rupq; t q y i;j j nst r o r +z t i ns kj i n x= tso|v l rDkz i|q n o r |l f (x) = − x +x −x R+SUT;VWYX JZFB XZR+[+R+[ ;l z i| o r! l \]$^_ `]a cbd&fUa `]a \]$^_ `]a cbedgfUa `]a |¶|l· ¸¹||º »|¼~¡½_¢¡P¾£|¿;¤À¢ ½Á ÂÁQü;Ä ¿;¥ À Å|¦Âu¼½ÆÇu§Á È Á  ¨©ªx«N¢.N¤¶ s&¬®_¯!¥©u¤°s± ².± ¿;©¼ ³u¢¹ »!ªu¢ º ¿|Á ¾! ´|µ sr {xz r f (x) = − x + x − x »ÑuÂÇ É Ê Ë_Ì Ì x= hi;j k v q n r i ns kj i n n r k_{ t oxw Pn j r!r n p;qxj yuw j r Ð Â Ì ½_¼xÀ$· Å|¿;¹ Ò|ÀuÓ;¾_Â&Ô|Â!ÔxÂÕ;Á Æ ¶|· r f (x) = − x +x −x Í Î ÏÐ Î Î Ð Î t y f *. x=. i k ruQpqur r k{ { r hi;j k.i {s i;z i r r k Ö × ;|lll 7 w i k~nn ruk v ruQj n pruqu®r z w prq t k kj oxi lw n! ljoyurgt nz tz r_k r t|n nu ;r l n k~r ;l1 i n| n nz rut& iq| nurl v n o l r t q {si;j n k I P (x) ≤ f (x) = − x + x + x ε(x), lim ε(x) = Ø ÀÂ~Ù1ÂD½¶ Ú¿;ÀÆÇuÁ È ½Ú ( )= ( )+ ε( ) x→ I lim ε(x) = »ÑsÂÇ Ð É ¶ É Ê ÂD½ Ë ¶ f x= g É Û × ·Û Ð ot q t y i; j jj.ns~rtu r o r rDk{s; wl j ~ru®z t {sisj kj i n rz t kj y r o r { t ® t {|{|i| k x→ g "/ x= g 0( ) (D) / (C ) g Ö f (x) = − x + (x − x ) = − x + x(x − x ) = P (x) + xε(x) / x= (C ) (D) P (x) = − x ε(x) = x − x −−−→ Éõ;·ö ÷Üø|Ý|ù ú|Þûß~àü_áàPýâ|þ;ãÿá ü û þ;ä ÿ åuûü æ çèéxê ãsÞ&õ ë®ì_íî è ãïÝsð ñ.ð Þþ;èû ò á ø ú!é á ù þ ý ó|ô. á N ß i k ruQpqur r k{ { r hi;j k.i {s i;z i r r k x→ x= ||ll m_ng n t l l n ; l n nu v n l 0213 456 1798 f (x) = − x + x − x x= ú f x= g : ;< < =*> ? @ ACBED F= ?C? = x = G ü_ûxÿ |þ;ø |ÿ ;ý ö f (x) = − x + x − x ; < f i ru jj lim f (x) = lim − x + x + x ε(x) =. f (x) = a+bx+cx H +x H ε(x) i i ns k ruQrpk_qur { l { l r rk n j z r_{ t r x→ x→ I"J KEL ö @ xlim f (x) = a ! "# →M I P (x) ≤$ ÿ Dü þ;ÿ õ ü ( ) = ( ) + ε( ) f (x) x 6= ;l rn k j z r_r oxw yut rDk n ;l1 n|n r 1r~k l f x= g (x) = I lim ε(x) = & x= ú ' (*)+ , ( , õ Dü f (x) = − x + x + (−x ) = − x + x + x (−x ) = P (x) + x ε(x) x →% õ ö ;l oxw yut n ;l n g "/ x= ON g 0( ) - g "/ x= g 0( ) = − P (x) = − x + x ε(x) = −x −−−→ & g (x ) − g ( P ) f (x ) − R VW W x →% lim = lim x→ x x →Q x VW f XOY Z [ \]*^ _X Z2Z X x = ` R − S x + x T + x T ε(x ) − R f (x) = a+bx+cx a +x a ε(x) = lim b"c d e 0 x →Q x [ g (` ) = b = lim − U + x + xε(x) = −U. x →Q \]$^_ `]a cbd&fUa `]a \]$^_ `]a cbedgfUa `]a l 7 w k~ru v j.j~rn ru®z w pq t rDkk_j i {sn& o rgj.ruz t 7kz t|nu{| isr jn kk~j ri ruz kj z tgr i;r qx r { Qo r {x{sixt kq${|i;j n k i k ruQpqur r k{ { r hi;j k.i {s i;z i r r k l ot q tw py i;q jt Djkjnsi tn& ro rgo r z t k t|nu ;r wl n k~r t z tg in q| r t y oo r r k t t ||ll t n {| _z r oYl z l l l n ;l n j nu v n l 0213 456 1798 (D) / (C ) g "/ x= (C ) (D) z f x= g x= i i ns k ruQrDpquk!r { l { rl k r n j z r_{ rt i ru j lim f (x) = lim f (x ) = a | }~ E }E " (D) / (C ) g : x→ x→ { ;< ( f (x) = a + bx + cx H + x H ε(x) f (x) x 6= ; I"J KEL J ? f*g h A =iBE? J hCA K h = L jE? = A ? (D) h g+k = A f x= g (x) = isj kj i n ruz t kj y r } q y ij j nutu r o r i nt y = − x. BO> h l @ m @ @ ? x = G+n him g El ? (C ) B*? g ? @ Ao x=. y = a + bx g 0( ) l 7 w k~ru v j.j~rn ru®z w pq t rDkkj i {sn! o rgj ~ruz t k.rt|nuz i r n z k~rr z ruq| z t&r iq| z r {|isj kj io r ruz t qkj {sr i;j n r k p prq g "/ x= z r k t q o r.qu o r t q y i; j j nstu r o r ;l : s x= : g 0( ) = − g 0 ( ) = b E E- i" x " o t w n yst o t n t y o l w pq{ tt rk®j i k tng{xo {srgix z k t k txnu r n t k~q r y i;j j ns tz tgr o i;r qx r ;l o r t q${sij n k o t j.~r f (x) − y ' x ≥. (D) / (C ) g / x= a sr {xz r t+17 u3 4-vO6 17w8 x h;ij k v q n r i ns kj i n n r k_{ t oxw Pn j r!r n pqxj ysw j r (C ) (D) x= (C ) (D) x= x= : (D) / (C ) g / r y = a + bx ¡ ¢£ ¤r a + bx ¥¦*r ¥-§ |l ii n kk ruru ppqsqsrr rDr k_k { l { lj r n z rr ;l h;ij k i i n ru {s iz i nut y r v r n k l O.. y =− x h+j h+j t z i| z i| r k q o i rns.qu r f x= f (x) = − x + ( − a)x + ( a − )x y + x y ε(x), lim ε(x) = prq x→ : f (x) = − x + ( − a)x + ( a − )x y + x y ε(x) : ; ll 7w k~n ru v j n ru®z w pq t kj oxi w n&o ysrgt z t k t|n nu r n k~r l1 nx n z tg i;qx rl o r t q${|i;j n k h+j $t z i| r k t q o r..i;qu o r l f x= g I a= f (x) − y ' ( a − )x y = x y moh+_j ngj n o rDj k xjoxi txn;n l r r t } {siq| $t u pqsr&z r&{|i;j tn k o r k!o q n {sijl n k x o t { t j.7~r t {|{|i| k rDk_{s w t j q.ruy i;;j~rj nsz i tun r z ro r yut z ruqx l o r z t {|isDj kj i n rz t kj y r o r g / x= g 0( ) x > f (x) − y > (C ) x (D) (D) / (C ) g x< f (x) − y < (C ) (D) h+h+jj oxt|n t t zz ixix rr kk t qq o rr...iq;qu or r "/ x= a a= ( , ) (C ) (D) x= ¨ I a 6= f (x) − y ' ( − a)x t t o o x a> f (x) − y < (C ) x (D) a< f (x) − y > (C ) (D) \]$^_ `]a LZd $ ` a ª© ¬« w®¯ ±° ³²µ´° \]$^_ `]a Ld Y$ `]a ª© ¬« å㯠±° æ²ç´° h;ij k rDk r hi v&v r o r oYl z r oYl z o r f (x) = Pn (x) + x n ε(x) z ix o r tt y q y i;j lY o r g (x) = Qn (x) + x n ε(x) lim ε(x) = x→ ;lr k sr {xz r hr i;k_j k vq { Dk rg ruz rDk ;i n|l i t nxntxrv ®z r w l o r : f (x) + g (x) n x= : É f (x) = z − x + ax + x y ε(x) g (x) = − x + è x − x y + x y ε(x) a ty ri o q|j k o r oYl z r oYl z o r l z ix o r t q y i;j lo r ; l i nx{sn i|r.r®z r o r ll ¶E·+¸ ¹Oºº»+¼E»i¼*» ½ ¾¿E¹OÀ Á* ÃOº2» ¸¼*» f (x) + g (x) = S(x) + x n ε(x), ¼*» Ä*Å Æ » ¸ ǽ*¿E¹*À ÁE Ã*º»¼*»¼*» Ä*Å Æ r k ≤n DL ( ) f (x) + g (x) ≤ nÈ y l m_n S(x) = Pn (x) + Qn (x) DL ( ) f (x) · g (x) p y : f (x) · g (x) n x= : F (x) = f (x ) E¶ »+¿ Å ¹O¼O½EÊ Ç2¼E»i¼E» ½ ¾¿E¹*À Á* ÃOº2» ¸¼E» g (x ) Ø é k~i ru v r o i rn kk!z rz rg_{{sxi;q|zj .nut|;nsv r_r i k~r n l1q r { t t q kkj rDko q~ru{s v i ro qx.ij k n k v j oxt|n z r ¼E» ÄOÅ Æ » ¸ ǽE¿E¹*À Á* ÃOº2»i¼E»i¼E» ÄOÅ Æ f (x) · g (x) = Tn (x) + x n ε(x), ≤n é*Óí ê ë Ïà"à-ÒÐÍ Ò 0 DLì ( Ù ) Ñ"Ò F (x) Ø ≤ Ë nÈ é ê ë F (Ù ) í CÉ Ïà"à-ÒÐ Ø Tn (x) / Pn (x) · Qn (x) ê î ÔÕ Ô-Ó Ó Ó (D) Ó Ô (C ) Fñ ä ÐÏ ÒÐÍ Î ïÞ ÚÖ Ïà!Ñ Ò(Í Ú à ð ÒàÚ*Ò â Ó â Ó Õ (C ) â Ó ÌÓ Í â â ä Ï Ð Ò (D) Ó Ô! Ñ"Ò Õ OÒ Ú Ó j y j j i n&o r oYl z h+j 1z r oYl z o r ≤n x n ε(x) Ð ïäÖ ×*ÒÐÍ Ï-×Ö ÚÖ ÏàÐ ÒÍ ÚÖ Ò" Ñ Ò ÐÐ Ï ÐÚ Ì " ÏÖ ×Ö à ð Ò x = ÙCñ Ô Õ-Ó ÕÓ Ô a Ñ"Ò × Ö àÚÍ Ò× ÍÒ Ð × " Ñ Ò Ø f (x ) ò : g ( ) 6= n Ó ÔÕ x=Ù ë DLì (Ù ) f (x) + g (x) g (x ) ÌÍ Î Ï"Ð ÑCÐ Ò ÏÖ ×ØCÑ"Ò ò Ø Ïà"à-ÒÐÍ Ò Ñ Ò Ø ò ì ì Ò× ÚÛ f (x) + g (x) = − x + ax ó + U − ô x + õ x ó − U x + x ε(x) Ø ì ì Ü =ô − õ x + (a + õ )x ó − U x + x ε(x) f (x ) Pn (x ) Rn (x ) Ø = Tn (x) + x n ε(x), Ó Ô = Tn (x) + U ë DLì (Ù ) f (x) · g (x) g (x ) ÒÝ ÐÞ Ò(Û Qn (x ) Qn (x ) Ø Ïà"à-ÒÐÍ Ò Ñ Ò Ø ò ì ì U f (x) · g (x) = − x + ax ó · U − ô x + õ x ó − U x + x ε(x) Ø Tn Ô n Ó Õ Pn (x) â Ó Qn (x) = ö − ÷ x + ø x ù − ö x ú −û x + ü x ý − þ x ÿ + û ax ý − ü ax ÿ +x ÿ ε(x) ÏCß Ò× ÚÍ ÒÞ ÏÚÖ ÒàÚ á Ì Ñ2Î Ï Ð C Ñ ÐÒ Ñ Ò!Í ÑCÖ Ö ×OÖ ÏàáÑ"Ò " Ð Ô Õ Ó â Ô Ó Ó x ì ì × Ö à ÚãÍ Ò× Ö ×E× à-äÒ× ä Ð ÏÖ ×E× à Ú*Ò× "Ñ Ò Ø = U − x + ( + U a)x ó − ( + ô a)x + x ε(x) Ø \]$^_ `]a LZd $ ` a ª© ¬« w®¯ ±° ³²µ´° !"#DL y ( )" &F" (x )' ")( " " "*+ " " "* $ %$ $ $% $ $ x , - / / − x + ax − x + 0 x − xy - 1 x3 3a 1 − + 62 x − 7 x ó − x ì 2 + + 2 − 45 x ó + 6 − 149 x ì a . 2 + (a − 7 )x ó + x ì & x x3 − 2 + 6 T − xì x ! @ x< < a − : = x B + x B ε(x ) F (x ) = ;: + + ; − => x ? + a − 4 xó 3 a :A 3 − a − 4 x ó + 8 2 − 45 x ì a 1 6 2 a − 5 4 xì C D+E 0 F1 ( ) C D+ 3GF F 0 ( ) = 8 FIH J!KMLO N PQR+S NT U VWXQ!YZ [ P\#]S^T Y'Z Y\_ S \Z S (D ) ` T Y&JPQN a+S (C ) ] S F b S Z)c+N VJ+[ d S+NT Y c+P d [ Z [ P\eN S+T YZ [ R+S)] S (C ) c!Y+NN Ycc+PN Z ` (D ) YQ)R+P[ d [ \+Y_ S)]S x = fb dQ [ R Y\Z T SdgR YT S+QN dg] S a F 1 8 FIH J!K y = 2 + x3F hi a = jk*l m n o p F (x ) − y = x q ε(x ) r sutevwtw x yz {}|yt~)++y~{t| &X tt )y ~&x w ~ xgz y~ t x z y+ +O'x |x ^te~ e&y ~& zu y )yz z xtx |Xx ~wx x > ¡} ¢ a > g£ ¤ ¥ (C ) ¦ §u ¨ © £ ¦ ¨ £ ¦ (D ) a a 6= * F (x ) − y ' − x < ¡} ¢ a < g£ ¤ ¥ (C ) ¦ §u ¨ © £ ¦ ¨ £ ¦ (D )