LEPH1AN Physics Past Paper PDF 2024-2025

Summary

This document is a physics past paper from 2024-2025, with questions and answers for exam preparation. The paper covers multiple chapters and concepts related to electric force, motion, and magnetism.

Full Transcript

ANSWERS CHAPTER 1 1.1 6 × 10–3 N (repulsive) 1.2 (a) 12 cm (b) 0.2 N (attractive) 1.3 2.4 × 1039. This is the ratio of electric force to the gravitational force (at the same distance) between an electron and a proton. 1.5 Charge is not created or destroyed. It is merely t...

ANSWERS CHAPTER 1 1.1 6 × 10–3 N (repulsive) 1.2 (a) 12 cm (b) 0.2 N (attractive) 1.3 2.4 × 1039. This is the ratio of electric force to the gravitational force (at the same distance) between an electron and a proton. 1.5 Charge is not created or destroyed. It is merely transferred from one body to another. 1.6 Zero N 1.8 (a) 5.4 × 106 N C–1 along OB (b) 8.1 × 10–3 N along OA 1.9 Total charge is zero. Dipole moment = 7.5 × 10–8 C m along z-axis. 1.10 10–4 N m 1.11 (a) 2 × 1012, from wool to polythene. (b) Yes, but of a negligible amount ( = 2 × 10–18 kg in the example). 1.12 (a) 1.5 × 10–2 N (b) 0.24 N 1.13 Charges 1 and 2 are negative, charge 3 is positive. Particle 3 has the highest charge to mass ratio. 1.14 (a) 30Nm2/C, (b) 15 Nm2/C 1.15 Zero. The number of lines entering the cube is the same as the number of lines leaving the cube. 1.16 (a) 0.07 mC (b) No, only that the net charge inside is zero. 1.17 2.2 × 105 N m2/C 1.18 1.9 × 105 N m2/C 1.19 (a) –103 N m2/C; because the charge enclosed is the same in the two cases. (b) –8.8 nC 1.20 – 6.67 nC 1.21 (a) 1.45 × 10–3 C (b) 1.6 × 108 Nm2/C 1.22 10 mC/m 1.23 (a) Zero, (b) Zero, (c) 1.9 N/C 2024-25 Physics CHAPTER 2 2.1 10 cm, 40 cm away from the positive charge on the side of the negative charge. 2.2 2.7 × 106 V 2.3 (a) The plane normal to AB and passing through its mid-point has zero potential everywhere. (b) Normal to the plane in the direction AB. 2.4 (a) Zero (b) 105 N C–1 (c) 4.4 × 104 N C–1 2.5 96 pF 2.6 (a) 3 pF (b) 40 V 2.7 (a) 9 pF (b) 2 × 10–10 C, 3 × 10–10 C, 4 × 10–10 C 2.8 18 pF, 1.8 × 10–9 C 2.9 (a) V = 100 V, C = 108 pF, Q = 1.08 × 10–8 C (b) Q = 1.8 × 10–9 C, C = 108 pF, V = 16.6 V 2.10 1.5 × 10–8 J 2.11 6 × 10–6 J CHAPTER 3 3.1 30 A 3.2 17 Ω, 8.5 V 3.3 1027 °C 3.4 2.0 × 10–7 Ω m 3.5 0.0039 °C–1 3.6 867 °C 3.7 Current in branch AB = (4/17) A, in BC = (6/17) A, in CD = (–4/17) A, in AD = (6/17) A, in BD. = (–2/17) A, total current = (10/17) A. 3.8 11.5 V; the series resistor limits the current drawn from the external source. In its absence, the current will be dangerously high. 3.9 2.7 × 104 s (7.5 h) CHAPTER 4 4.1 π × 10–4 T ≃ 3.1 × 10–4 T 4.2 3.5 × 10–5 T 216 2024-25 Answers 4.3 4 × 10–6 T, vertical up 4.4 1.2 × 10–5 T, towards south 4.5 0.6 N m–1 4.6 8.1 × 10–2 N; direction of force given by Fleming’s left-hand rule 4.7 2 × 10–5 N; attractive force normal to A towards B 4.8 8π × 10–3 T ≃ 2.5 × 10–2 T 4.9 0.96 N m 4.10 (a) 1.4, (b) 1 4.11 4.2 cm 4.12 18 MHz 4.13 (a) 3.1 Nm, (b) No, the answer is unchanged because the formula τ = N I A × B is true for a planar loop of any shape. CHAPTER 5 5.1 0.36 J T –1 5.2 (a) m parallel to B; U = –mB = – 4.8 × 10–2 J: stable. (b) m anti-parallel to B; U = +mB = +4.8 × 10–2 J; unstable. 5.3 0.60 J T –1 along the axis of the solenoid determined by the sense of flow of the current. 5.4 7.5 ×10–2 J 5.5 (a) (i) 0.33 J (ii) 0.66 J (b) (i) Torque of magnitude 0.33 J in a direction that tends to align the magnitude moment vector along B. (ii) Zero. 5.6 (a) 1.28 A m2 along the axis in the direction related to the sense of current via the right-handed screw rule. (b) Force is zero in uniform field; torque = 0.048 Nm in a direction that tends to align the axis of the solenoid (i.e., its magnetic moment vector) along B. 5.7 (a) 0.96 g along S-N direction. (b) 0.48 G along N-S direction. CHAPTER 6 6.1 (a) Along qrpq (b) Along prq, along yzx (c) Along yzx (d) Along zyx (e) Along xry (f ) No induced current since field lines lie in the plane of the loop. 217 2024-25 Physics 6.2 (a) Along adcd (flux through the surface increases during shape change, so induced current produces opposing flux). (b) Along a′d′c′b′ (flux decreases during the process) 6.3 7.5 × 10–6 V 6.4 (1) 2.4 × 10–4 V, lasting 2 s (2) 0.6 × 10–4 V, lasting 8 s 6.5 100 V 6.6 (a) 1.5 × 10–3 V, (b) West to East, (c) Eastern end. 6.7 4H 6.8 30 Wb CHAPTER 7 7.1 (a) 2.20 A (b) 484 W 300 7.2 (a) = 212.1 V 2 (b) 10 2 =14.1 A 7.3 15.9 A 7.4 2.49 A 7.5 Zero in each case. 7.6 1.1 × 103 s–1 7.7 2,000 W 7.8 (a) 50 rad s–1 (b) 40 Ω, 8.1 A (c) VLrms = 1437.5 V, VCrms = 1437.5 V , V Rrms = 230 V  1  V LCrms = I rms  ω 0 L −  =0  ω0 C  CHAPTER 8 8.1 (a) C = ε0 A / d = 8.00 pF dQ dV =C dt dt dV 0.15 = = 1.87 × 10 9 V s –1 dt 80.1 × 10 –12 218 2024-25 Answers d (b) i d = ε0 ΦΕ.. Now across the capacitor ΦE = EA, ignoring end dt corrections. dΦΕ Therefore, i d = ε0 A dt Q dE i Now, E =. Therefore, = , which implies id = i = 0.15 A. εA 0 dt ε0 A (c) Yes, provided by ‘current’ we mean the sum of conduction and displacement currents. 8.2 (a) Irms = Vrms ωC = 6.9µA (b) Yes. The derivation in Exercise 8.1(b) is true even if i is oscillating in time. µ0 r (c) The formula B = id 2π R 2 goes through even if id (and therefore B ) oscillates in time. The formula shows they oscillate in phase. Since id = i, we have µ r B0 = 0 2 i 0 , where B and i are the amplitudes of the oscillating 2π R 0 0 magnetic field and current, respectively. i0= 2I rms = 9.76 µA. For r = 3 cm, R = 6 cm, B0 = 1.63 × 10–11 T. 8.3 The speed in vacuum is the same for all: c = 3 × 108 m s–1. 8.4 E and B in x-y plane and are mutually perpendicular, 10 m. 8.5 Wavelength band: 40 m – 25 m. 8.6 109 Hz 8.7 153 N/C 8.8 (a) 400 nT, 3.14 × 108 rad/s, 1.05 rad/m, 6.00 m. (b) E = { (120 N/C) sin[(1.05 rad/m)]x – (3.14 × 108 rad/s)t]} ĵ B = { (400 nT) sin[(1.05 rad/m)]x – (3.14 × 108 rad/s)t]} k̂ 8.9 Photon energy (for λ = 1 m) 6.63 × 10−34 × 3 × 108 = eV = 1.24 × 10 −6 eV 1.6 × 10 −19 Photon energy for other wavelengths in the figure for electromagnetic spectrum can be obtained by multiplying approximate powers of ten. Energy of a photon that a source produces indicates the spacings of the relevant energy levels of the source. For example, λ = 10–12 m corresponds to photon energy = 1.24 × 106 eV = 1.24 MeV. This indicates that nuclear energy levels (transition between which causes 219 2024-25 Physics γ-ray emission) are typically spaced by 1 MeV or so. Similarly, a visible wavelength λ = 5 × 10–7 m, corresponds to photon energy = 2.5 eV. This implies that energy levels (transition between which gives visible radiation) are typically spaced by a few eV. 8.10 (a) λ = (c/ν) = 1.5 × 10–2 m (b) B0 = (E0/c) = 1.6 × 10–7 T (c) Energy density in E field: uE = (1/2)ε0 E 2 Energy density in B field: uB = (1/2µ0)B 2 1 Using E = cB, and c = , uE = uB µ0 ε 0 220 2024-25

Use Quizgecko on...
Browser
Browser