Lecture 5: Introduction to Nuclear System and Operation (Khalifa University)

Document Details

WellBacklitLivermorium8013

Uploaded by WellBacklitLivermorium8013

Khalifa University

Dr. Ahmed Alkaabi

Tags

nuclear systems nuclear reactor convection heat transfer engineering

Summary

This lecture from Khalifa University covers heat removal from nuclear reactors using convection. Basic concepts such as Newton's law of cooling, thermal resistance, and heat transfer coefficients are introduced. Equations and calculations related to these concepts are also presented.

Full Transcript

NUCE 402: Introduction to Nuclear System and Operation Chapter 3.1 (Heat Removal from Nuclear Reactors – Convection) Dr. Ahmed Alkaabi Previous Lectures  Conduction  Fourier’s law q  kT  From energy balance...

NUCE 402: Introduction to Nuclear System and Operation Chapter 3.1 (Heat Removal from Nuclear Reactors – Convection) Dr. Ahmed Alkaabi Previous Lectures  Conduction  Fourier’s law q  kT  From energy balance q Steady state heat  2T  0 k conduction equation  Solutions d 2T q q 2  0 T  x  Tm  Plate-type dx 2 kf 2k f d 2T xa 0 T  Ts  (Ts  Tc ) dx 2 b Tm  Tc a b q  Tm  Tc  q(  ) a  b 2k f A k c A  Cylindrical 2k f A k c A 1 Tm  Ts  q( ) 4k f H T T Tm ( z )  Tc ( z ) q m c q( z )  ln( 1  b / a ) R f  Rc generalization 2 (a  b) H ( R f  Rc ) Ts  Tc  q kc 2H 2 Convection  Newton’s law of cooling  Transfer of heat from a heated solid to a moving fluid q  h(Tc  Tb ) Heat flux Heat transfer coefficient Btu/hr-ft2 Btu/hr-ft2-oF  Heat transfer coefficients  Function of liquid, flow types, coolant temp., etc.  Typical values in power reactor  Light and heavy water: 5,000~8,000 Btu/hr-ft2-oF 25~45 kW/m2-K  Gases: 10~100 Btu/hr-ft2-oF 0.055~0.55 kW/m2-K  Liquid sodium: 4,000~50,000 Btu/hr-ft2-oF 20~300 kW/m2-K Total rate of heat flow across A 1 q  qA  hA(Tc  Tb ) Introduce the thermal resistance, Rh Rh  hA (Tc  Tb ) q Rh 3 Thermal Resistance  Total thermal resistance  For plate-type fuel elements Tm  Tc Tm  Tb q q a b a b 1    Tb 2k f A k c A 2k f A kc A hA a b 1 then R    2k f A kc A hA  For clad cylindrical fuel elements Tm  Tb Tm  Tc Tm  Tb q q q R 1 ln( 1  b / a ) 1 ln( 1  b / a) 1    4k f H 2kc H 4k f H 2kc H hA 1 ln( 1  b / a) 1 then R    where A  2 (a  b) H 4k f H 2kc H hA  For space dependent heat source T ( z )  Tb ( z ) Tm ( z )  Tb ( z ) q( z )  m q( z )  R 2 (a  b) H ( R f  Rc  Rh ) Tc ( z )  Tb ( z ) q( z )  q( z)  h(Tc ( z)  Tb ( z)) 2 (a  b) HRh 4 Temperature along the Coolant Channel  Coolant channel  A coolant volume associated with a single fuel rod  Heat generated within the fuel is Ac transferred  Coolant temperature will rise  Consider a coolant slab of t = dz Volume of coolant: Ac dz Ac : c  x area of fuel channel Mass of coolant: Ac dz Amount of heat needed to increase dTb: Ac dz c p dTb 1 Rate of heat addition to increase dTb = dq: Ac dz c p dTb dt Therefore, Ac c p dTb dq  c p dTb  qAf dz  => Coolant flow rate z where, q  qmax  cos( ) for fuel rod at the center H 5 Temperature along the Coolant Channel  For the central fuel rod  Bulk coolant temperature qA f dq  c p dTb  qAf dz dTb  dz z c p where, q  qmax  cos( ) H Tb  Tb  Tb 0 Tb q’’’ z  A f qmax z  cos( )dz  H / 2 c H p Vf Therefore, the maximum coolant temp.  A f H  qmax z  Tb  Tb 0  1  sin( )  V f 2qmax c p   H  Tb ,max  Tb 0  Cc c p Tb0  Cladding temperature Ac 1 dq dq  qAf dz  qdAc  qCc dz  h(Tc  Tb )Cc dz Tc  Tb  Substituting Tb and the integration hCc dz  V f  qmax z  qmax  A f z qA f Tc  Tb 0  1  sin( )   cos( )  c p  H  hCc H hCc  A f qmax z  V f qmax z z Tc  Tb  cos( )   V f cos( ) cos( )  Rh qmax hCc H hA H H 6 Temperature along the Coolant Channel z z rewrite  V f cos( Tc  Tb  Rh qmax  A f H cos( )  Rh qmax ) H H  For fuel rod central temp. =q Tm  Tb z  A f H cos( )  qmax Substituting Tb and the integration R H Total thermal resistance  V f  qmax z  z Tm  Tb 0  1  sin( )   q  V R cos( ) c p  max f H  H  Factors affecting maximum fuel temp.  Maximum heat generation at mid-point  Largest heat transfer q’’’  Slow decreasing away from the mid-point  Rising bulk temperature along z  Tm must increase to provide q” => Maximum Tm occurs above the mid-point 7 Temperature along the Coolant Channel  Locations of maximum temp. H zc ,max  cot 1 (c p Rh )  H z m ,max  cot 1 (c p R )   Values of maximum temp. 1  1  2   V f Rh  Tc ,max  Tb 0  qmax    c p Rh    1  1  2   V f R  Tm ,max  Tb 0  qmax    c p R    Limitations: - qualitative simple power distribution constant k and h does not account for boiling - not applicable to liquid metal coolants  If thermal resistance is small, the maximum temp. can be lowered  increase conductivity of fuel/cladding  increase heat transfer coefficient of coolant 8 Heat Transfer Coefficients  Heat removal by coolant  Conduction  When every portion of fluid moves parallel to the channel => Laminar flow  No net motion of fluid in radial direction => conduction dominate  Convection  When there are significant velocity fluctuation in radial direction => Turbulent flow  Heat carried away from the wall to the bulk of liquid => convection dominate  In NPP  Coolant is pumped  Forced convection => turbulent flow  More or less uniform bulk temperature  Rapid drop of coolant temperature in the vicinity of fuel 9 Heat Transfer Coefficients  Reynolds number  Useful in characterizing the flow of a fluid  Dimensionless parameter De Re  Fluid viscosity  lb/hr-ft, or poise Equivalent diameter (g/cm-sec) c  x area of coolant channel De  4  wetted perimeter of coolant channel s 2  a 2 s 2  a 2  Condition for turbulent (typical) De  4 2 2a a  Laminar: Re < 2000  Mixture: 2000 < Re < 10000 High Re => more turbulent => large h  Turbulent: Re > 10000 => high rate of heat transfer to coolant  Values of heat transfer coefficients  Determined by experiments  Provided as experimental correlations  Need other dimensionless parameters hDe cp Nusselt number Nu  Prandtl number Pr  k k 10 Heat Transfer Coefficients  For flow through long straight channel under turbulent conditions k Nu  C Re Pr m n h( )C Re m Pr n De  For long, straight, circular tube Limitations: - valid for only for the reference k h  0.023( ) Re 0.8 Pr 0.4 temperatures De - not applicable when conduction become non-negligible Dittus-Boelter Eq. - significant error if channel deviate significantly from circular shape Liq. Na: 46.4 Btu/hr-ft-oF  For liquid metals Water: 0.381 Btu/hr-ft-oF  Large conductivity He: 0.115 Btu/hr-ft-oF  Less steep temp. gradient in coolant Correlation for Liq. Metal through a hexagonal lattice of rods Nu  0.66  3.126(s / d )  1.184(s / d ) 2  0.0155(Pe)0.86 Valid for s/d > 1.35 Ratio of lattice pitch Pe  Re Pr to rod diameter Peclet number 11 Summary  Newton’s law of cooling q  h(Tc  Tb )  Total thermal resistance Tb a b 1 R   2k f A kc A hA Tm  Tb q 1 ln( 1  b / a) 1 R R   4k f H 2kc H hA  Temp. along the channel z  V f   V f cos( Tc  Tb  Rh qmax ) qmax z  H Tb  Tb 0  1  sin( ) c p  H  z  V f cos( ) Tm  Tb  Rqmax H  Heat transfer coefficients  Dimensionless numbers  High Re value for turbulent flow k h  0.023( ) Re 0.8 Pr 0.4 D  hDe cp De Re  e Nu  Pr   k k Dittus-Boelter Eq. 12

Use Quizgecko on...
Browser
Browser