NUCE 402: Introduction to Nuclear System and Operation Lecture 4 PDF

Summary

This lecture provides an introduction to nuclear system operation, focusing on heat removal from nuclear reactors via conduction. It covers Fourier's law, energy conservation, and solutions to conduction equations for plate and cylindrical fuel rods.

Full Transcript

NUCE 402: Introduction to Nuclear System and Operation Chapter 2-2 (Heat Removal from Nuclear Reactors – Conduction) Dr. Ahmed Alkaabi Conduction  Heat removal from a reactor  Conduction  Caused by the temperature difference...

NUCE 402: Introduction to Nuclear System and Operation Chapter 2-2 (Heat Removal from Nuclear Reactors – Conduction) Dr. Ahmed Alkaabi Conduction  Heat removal from a reactor  Conduction  Caused by the temperature difference  No macroscopic movement of matters  Convection  Caused by the temperature difference  Heat carried away by moving liquid or gas  Radiation  Heat removal by thermal radiation  Conduction  Fourier’s law q  kT Similarity with Fick’s law Heat flux Thermal conductivity J   D Btu/hr-ft2 Btu/hr-ft-oF q  n  qn Heat flow rate across a unit area with unit outward normal, n 2 Conduction  Energy conservation  In unit volume  Net rate of flow  Rate of heat   of heat out of V  production within V   0       q  ndA   div qdV A V   qdV     qdV V V   q  q  0 q  kT   q  k  T  k 2T q Then finally  2T  0 Steady state heat conduction equation, k or Poisson’s equation When there is no heat source  2T  0 Laplace’s equation 3 Solutions to Conduction Eq. - Plate  Plate-type fuel element  Fueled central strip of 2a  Surrounded by cladding of b  Uniform heat generation density, q"' Btu/hr-ft3  At steady state  Heat flow in x-direction only q d 2T q Poisson’s eq. T 2 0 2  0 k dx kf q 2 General solution T   x  C1 x  C2 2k f Boundary conditions T ( x  0)  Tm C 2  Tm dT 0 C1  0 dx x 0 4 Solutions to Conduction Eq. - Plate  Temperature distribution q 2 A T  x  Tm 2k f Temp. at the surface of the fuel q 2 Ts   a  Tm 2k f  Heat flow out of the surface of the fuel = heat produced within the fuel q  qAa Or, from the Fourier’s law q   k f dT q  k f ( 2 x)  qa dx 2k f x a then q  qA Tm  Ts rearrangement q Thermal resistance a / 2k f A 5 Solutions to Conduction Eq. - Plate  Temperature distribution in cladding  No heat source  T 0 2 d 2T 2 0 dx General solution T  C1 x  C2 Boundary conditions T ( x  a)  Ts C1a  C2  Ts xa T  Ts  (Ts  Tc ) b T ( x  a  b)  Tc C1 (a  b)  C2  Tc Heat balance dT Tc  Ts q  qA q   k c  kc dx b Ts  Tc q  kc A b 6 Solutions to Conduction Eq. - Plate  Temperature difference In fuel meat Tm  Ts a q Tm  Ts  q( ) a / 2k f A 2k f A In cladding Ts  Tc b q  kc A Ts  Tc  q ( ) b kc A therefore Tm  Tc a b q Tm  Tc  q(  ) a b 2k f A k c A  Total thermal 2k f A k c A resistance => Contribution of any materials can be simplified by linearly adding their thermal resistance 7 Solutions to Conduction Eq. - Cylinder  Cylindrical fuel rod  Fueled central rod of r=a  Surrounded by cladding of b  Uniform heat generation density, - q’” Btu/hr-ft3  At steady state  Heat flow in r-direction only q d 2T 1 dT q Poisson’s eq. T 2 0 2   0 k dr r dr k f q 2 General solution T  r  C1 ln r  C2 4k f Boundary conditions T ( x  0)  Tm C 2  Tm T is non  singular C1  0 8 Solutions to Conduction Eq. - Cylinder  Temperature distribution q 2 q 2 T  r  Tm Temp. at the surface of the fuel Ts   a  Tm 4k f 4k f  Heat flow out of the surface of the fuel = heat produced within the fuel Thermal resistance Tm  Ts q  qa 2 H q Rf  1 1 /( 4k f H ) 4k f H  Temperature distribution in cladding  No heat source General solution  T 0 2 d 2T 1 dT 2  0 T  C1 ln r  C2 dr r dr Boundary conditions T ( r  a )  Ts C1 ln a  C2  Ts T (r  a  b)  Tc C1 ln( a  b)  C2  Tc a Ts ln( a  b)  Tc ln a  (Ts  Tc ) ln r T b Then ln( 1  b / a) 9 Solutions to Conduction Eq. - Cylinder Heat balance dT q  qA q  qAsurface  kc 2 (a  b) H dr surface (Ts  Tc ) 1 q  kc 2 (a  b) H ( ) ln( 1  b / a) r r  a b (Ts  Tc ) Thermal resistance  kc 2H ln( 1  b / a ) ln( 1  b / a) Rc  2Hk c  Temperature difference In fuel rod Tm  Ts Tm  Ts  q( 1 q ) 1 /( 4k f H ) 4k f H Tm  Tc  q( R f  Rc ) In cladding (Ts  Tc ) ln( 1  b / a ) Tm  Tc q  kc 2H Ts  Tc  q q ln( 1  b / a) kc 2H R f  Rc 10 Space Dependent Heat Source  In finite cylindrical core z q(r )  qmax  (r ) cos( ) H  Negligible variation in r-direction within a given fuel rod  Non-uniform heat generation along z-direction => results in non-uniform temperature distribution along z-direction  Negligible heat flow along z-direction  Heat flow out of the surface of the fuel at z = heat produced within the fuel at z q( z)  2 (a  b) Hq( z)  q( z)a 2 H a2 Tm ( z)  Tc ( z )  q( z)( R f  Rc ) q( z )  q( z ) 2(a  b) q( z ) Surface area generalization q( z )  Tm  Tc  q( R f  Rc ) 2 (a  b) H Tm ( z )  Tc ( z )  2 (a  b) H ( R f  Rc )11 Exponential Heat Source  Heat generation in shield and structure  Flux attenuate exponentially  Radiative energy is deposited exponentially  Consider slab q  Se x q d 2T S  x T 2 0  e 0 k dx 2 k General solution S T  C1 x  C2  2 e  x k Boundary conditions T ( x  0)  T1 T ( x  a)  T2 x S x T  T1  (T2  T1 )  2 [1  e  (1  e  x )]  x a k a => T could be higher than both T1 and T2 12 Summary  Conduction Similarity with Fick’s law  Fourier’s law q  kT J   D  From energy balance q Steady state heat conduction equation,  2T  0 k or Poisson’s equation  Solutions d 2T q q 2  0 T  x  Tm  Plate-type dx 2 kf 2k f d 2T xa 0 T  Ts  (Ts  Tc ) dx 2 b Tm  Tc a b q Tm  Tc  q(  ) a  b 2k f A k c A  Cylindrical 2k f A k c A 1 Tm  Ts  q( ) 4k f H Tm  Tc Tm ( z )  Tc ( z ) q q( z )  ln( 1  b / a ) R f  Rc generalization 2 (a  b) H ( R f  Rc ) Ts  Tc  q kc 2H 13  Homework# 2  Due date: one week before class 14

Use Quizgecko on...
Browser
Browser