Math 103 Lecture 1 PDF
Document Details
Uploaded by Deleted User
Dr. Mustafa El-Agamy, Dr. Mohammad Yasin
Tags
Related
Summary
This lecture covers fundamental mathematical concepts, including various types of numbers (natural, whole, integer, rational, irrational, and real numbers), functions, linear functions, quadratic functions, and absolute value functions. The lecture uses diagrams and examples to illustrate these concepts.
Full Transcript
Math 103 Lecture 1 Dr. Mustafa El-Agamy Dr. Mohammad Yasin Numbers ▪ Natural numbers: ℕ = {1, 2, 3, 4, … } ▪ Whole numbers: ℕ ∗ = {0, 1, 2, 3, 4, … } ▪ Integer numbers: ℤ = { … , −3, −2, −1, 0, 1, 2, 3, … }...
Math 103 Lecture 1 Dr. Mustafa El-Agamy Dr. Mohammad Yasin Numbers ▪ Natural numbers: ℕ = {1, 2, 3, 4, … } ▪ Whole numbers: ℕ ∗ = {0, 1, 2, 3, 4, … } ▪ Integer numbers: ℤ = { … , −3, −2, −1, 0, 1, 2, 3, … } 1 4 −10 ▪ Rational numbers: ℚ = {𝒏/𝒎; 𝑛, 𝑚 ∈ ℤ; 𝑚 ≠ 0} 2 3 ത Examples: = 0.5, = 1. 3, 5 = −2 ▪ Irrational numbers: ℚ′ = {ⅇ, 𝜋, 2 , … } ▪ Real numbers: ℝ = ℚ ⋃ ℚ′ = −∞, +∞ ℕ, ℤ and ℚ contain discrete data values, while ℝ contains continuous data values. Venn Diagram of Number System Functions 𝒚=𝒇 𝒙 Vertical Line Test A function ƒ can have only one value ƒ (𝒙) for each 𝒙 in its domain, so no vertical line can intersect the graph of a function more than once. Function Not a function (Relation) Domain & Range A function ƒ is like a machine that produces an output value ƒ(𝒙) in its range whenever we feed it an input value 𝒙 from its domain. The domain is the largest set of real 𝒙-values for which the formula gives real 𝒚-values. Function Graph 𝒇 𝟏 =𝟓 𝒇 𝟑 =𝟏 𝒇 𝟔 = 𝟏𝟎 𝒚=𝒇 𝒙 Domain: 𝟏, 𝟔 Range: 𝟏, 𝟏𝟎 Linear Function (Straight Line) Constant rate of change ≡ Slope Standard Equation 𝒚=𝒎𝒙+𝒌 General Equation 𝑨𝒙+𝑩𝒚+𝑪=𝟎 𝒎 = −𝑨 /𝑩 Find the equation of line with slope 4 and passes through (2,3). (2,3) 𝑦 =4𝑥+𝑘 ⇒ 3=8+𝑘 ⇒ 𝑘 = −5 ∴𝑦 =4𝑥−5 Another solution: 𝑦 − 𝑦1 𝑦−3 𝑥 − 𝑥1 =𝑚 ⇒ 𝑥−2 =4 ⇒ 𝑦−3=4𝑥−8 ∴𝑦 =4𝑥−5 Sketch the line 𝟐𝒚 + 𝟑 𝒙 − 𝟔 = 𝟎 and find its angle of inclination. 𝒚 Put 𝑦 = 0 ⇒ 𝑥-intercept = 2 Put 𝑥 = 0 ⇒ 𝑦-intercept = 3 −3 𝑚= = tan 𝜙 2 𝝓 𝒙 −3 ∴ 𝜙 = tan−1 ≅ 123.7° 2 Quadratic Function (Parabola) 𝒚 = 𝒙𝟐 Domain: −∞, ∞ ≡ ℝ Range: 0, ∞ Symmetry: Symmetric about 𝑦-axis Zeros: 𝑥 = 0 𝒚=𝟎 𝒙=? Zeros of a function ≡ 𝒙-intercepts Bridges Projectiles Satellite Arch Dish Absolute Value Function (Modulus) 𝒙 if 𝒙 ≥ 𝟎 𝒚= 𝒙 =ቊ −𝒙 if 𝒙 < 𝟎 𝒚 Domain: −∞, ∞ ≡ ℝ Range: 0, ∞ Symmetry: Symmetric about 𝑦-axis 𝒙 Zeros: 𝑥 = 0 Square Root Function 𝒚 𝒚= 𝒙 Domain: 0, ∞ 𝟗 ≠ ±𝟑 Range: 0, ∞ 𝒙 Zeros: 𝑥 = 0 𝒙𝟐 = 𝒙 Reciprocal Function 𝒚 𝟏 𝒚= 𝒙 Domain: ℝ − 0 Range: ℝ − 0 𝒙 Symmetry: Symmetric about origin Asymptotes: Vertical (𝑦-axis) or (𝑥 = 0) Horizontal (𝑥-axis) or (𝑦 = 0) Note that: 𝒚 𝟏 𝒚= 𝟐 𝒙 Domain: ℝ − 0 Range: 0, ∞ Symmetry: Symmetric about 𝑦-axis 𝒙 Asymptotes: Vertical (𝑦-axis) or (𝑥 = 0) Horizontal (𝑥-axis) or (𝑦 = 0)