Квадратные уравнения. Основные понятия 8 класс онлайн-подготовка

Summary

This document is an online learning resource about quadratic equations for 8th grade. It covers the definition, explanation and examples of the topic.

Full Transcript

::: {.container} ::: {data-react-class="Header" data-react-props="{"baseUrl":"https://lc.rt.ru/classbook/","siteUrl":"https://lc.rt.ru/"}" data-hydrate="t" data-react-cache-id="Header-0"} ::: {.header} ::: {.header__menu-mobile} ::: [](https://lc.rt.ru/myeducation){.header__wrapper__logo} ::: {.he...

::: {.container} ::: {data-react-class="Header" data-react-props="{"baseUrl":"https://lc.rt.ru/classbook/","siteUrl":"https://lc.rt.ru/"}" data-hydrate="t" data-react-cache-id="Header-0"} ::: {.header} ::: {.header__menu-mobile} ::: [](https://lc.rt.ru/myeducation){.header__wrapper__logo} ::: {.header__logo} ::: ::: {.header__auth} Попробовать бесплатно [Войти](https://lc.rt.ru/auth){.header__link.header__signin} ::: [](https://lc.rt.ru/auth){.header__auth-mobile} ::: ::: {.modal} ::: {.modal__overlay} ::: {.modal__menu-wr} ::: {.modal__content-container} ::: {.modal__menu} ::: {.modal__menu-container} ::: {.modal__menu-buttons} Попробовать бесплатно Войти ::: ::: ::: {.modal__menu-footer} ::: {.modal__menu-footer-label} Служба поддержки: ::: [8 800 350-03-35](tel:88003500335){.modal__menu-footer-phone} ::: ::: ::: ::: ::: ::: ::: ::: {.main data-role="main"} ::: {.content.lesson} ::: {data-react-class="BreadCrumbs" data-react-props="{"breadСrumbs":[{"name":"Учебник","url":"https://lc.rt.ru/classbook/"},{"name":"Математика","url":"https://lc.rt.ru/classbook/matematika"},{"name":"8 класс","url":"https://lc.rt.ru/classbook/matematika-8-klass"},{"name":"Квадратные уравнения. Профильный уровень","url":"https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven"},{"name":"Квадратные уравнения. Основные понятия","url":"https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven/5043"}]}" data-hydrate="t" data-react-cache-id="BreadCrumbs-0"} 1. [[Учебник]{itemprop="name"}](https://lc.rt.ru/classbook/) 2. [[Математика]{itemprop="name"}](https://lc.rt.ru/classbook/matematika) 3. [[8 класс]{itemprop="name"}](https://lc.rt.ru/classbook/matematika-8-klass) 4. [[Квадратные уравнения. Профильный уровень]{itemprop="name"}](https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven) 5. [[Квадратные уравнения. Основные понятия]{itemprop="name"}](https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven/5043) ::: [Математика](https://lc.rt.ru/classbook/matematika-8-klass) {#математика.lesson__subject} =========================================================== [Тема 12: Квадратные уравнения. Профильный уровень]{.lesson__theme} Урок 4: Квадратные уравнения. Основные понятия {#урок-4-квадратные-уравнения.-основные-понятия.lesson__name} ---------------------------------------------- ::: {.section.lesson__content} ::: {data-react-class="LessonContent" data-react-props="{"baseUrl":"https://lc.rt.ru/","lessonContent":"\u003ch3\u003e\u0026nbsp;\u003c/h3\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp align=\"center\"\u003e\u003cstrong\u003eТема: \u003c/strong\u003e\u003cstrong\u003eКвадратные уравнения\u003c/strong\u003e\u003cstrong\u003e.\u003c/strong\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp align=\"center\"\u003e\u003cstrong\u003eУрок: \u003c/strong\u003e\u003cstrong\u003eКвадратные уравнения. Основные понятия\u003c/strong\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003ch3\u003e1. Определение квадратного уравнения\u003c/h3\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОпределение. \u003c/em\u003e\u003cstrong\u003eКвадратным уравнением\u003c/strong\u003e называется уравнение вида\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"28\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33169/24b0f973c2d7475effbc26b2b48b80ac.png\" style=\"vertical-align: middle;\" width=\"199\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33170/95f8c6e23d93ccdd6f1159ac0bf41b35.png\" style=\"vertical-align: middle;\" width=\"66\" /\u003e\u0026nbsp;фиксированные действительные числа, которые задают квадратное уравнение. Эти числа имеют определенные названия:\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33171/374ae5f3668122668fb028d6222f5428.png\" style=\"vertical-align: middle;\" width=\"25\" /\u003e\u0026nbsp;старший коэффициент (множитель при \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33172/17aa5dbe8e352ed44a2b25959233b3ff.png\" style=\"vertical-align: middle;\" width=\"17\" /\u003e);\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33173/21429eabd70b5c65a7c88200183d8e75.png\" style=\"vertical-align: middle;\" width=\"24\" /\u003e\u0026nbsp;второй коэффициент (множитель при \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33174/75200300ecaa84907c16ff2e2a27fb1f.png\" style=\"vertical-align: middle;\" width=\"9\" /\u003e);\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33175/8f6af3e27c05ba954807d302668eb8c1.png\" style=\"vertical-align: middle;\" width=\"23\" /\u003e\u0026nbsp;свободный член (число без множителя-переменной).\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eЗамечание. \u003c/em\u003eСледует понимать, что указанная последовательность записи слагаемых в квадратном уравнении является стандартной, но не обязательной, и в случае их перестановки необходимо уметь определять численные коэффициенты не по их порядковому расположению, а по принадлежности к переменным.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОпределение. \u003c/em\u003eВыражение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33176/e07cc589d7d39f55fe9f3fe41b77b9fb.png\" style=\"vertical-align: middle;\" width=\"90\" /\u003e\u0026nbsp;носит название \u003cstrong\u003eквадратный трехчлен\u003c/strong\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 1. \u003c/em\u003eЗадано квадратное уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33177/3594394d990061f7e5da9381ddb78089.png\" style=\"vertical-align: middle;\" width=\"120\" /\u003e. Его коэффициенты:\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33178/2a317786797a7a7c1686873f10b8f3d1.png\" style=\"vertical-align: middle;\" width=\"69\" /\u003e\u0026nbsp;старший коэффициент;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33179/616a52941a71e3250d10ee5f3cf42d94.png\" style=\"vertical-align: middle;\" width=\"51\" /\u003e\u0026nbsp;второй коэффициент (обратите внимание, что коэффициент указывается со знаком передним);\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33180/ce758697ada39f7b80908e4bf3ab41c7.png\" style=\"vertical-align: middle;\" width=\"38\" /\u003e\u0026nbsp;свободный член.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003ch3\u003e2. Приведенные квадратные уравнения\u003c/h3\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОпределение. \u003c/em\u003eЕсли \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33181/53b06eae610ee1ea2acbe3da2d27827a.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e, то квадратное уравнение называется \u003cstrong\u003eнеприведенным\u003c/strong\u003e, а если \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33182/57e6ac2cd533d57a98a3bc0f7c6ba742.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e, то квадратное уравнение называется \u003cstrong\u003eприведенным\u003c/strong\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 2. \u003c/em\u003eПривести квадратное уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33177/3594394d990061f7e5da9381ddb78089.png\" style=\"vertical-align: middle;\" width=\"120\" /\u003e. Разделим обе его части на 2:\u0026nbsp; \u003cimg alt=\"\" height=\"30\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33183/481041be15e09d91bffa7286e88ffcf7.png\" style=\"vertical-align: middle;\" width=\"112\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eЗамечание. \u003c/em\u003eКак видно из предыдущего примера, делением на старший коэффициент мы не изменили уравнение, но изменили его форму (сделали приведенным), аналогично его можно было и умножить на какое-нибудь ненулевое число. Таким образом, квадратное уравнение задается не единственной тройкой чисел, а говорят, что \u003cstrong\u003eзадается с точностью до ненулевого множества коэффициентов\u003c/strong\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОпределение. \u003c/em\u003e\u003cstrong\u003eПриведенное квадратное уравнение\u003c/strong\u003e получают из неприведенного путем деления на старший коэффициент \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33184/ff321672c25061311433fb63d18b2ec5.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e, и оно имеет вид:\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"38\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33185/2c436fcd7c3f9c880ac4960d797afbfc.png\" style=\"vertical-align: middle;\" width=\"191\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eПриняты следующие обозначения: \u003cimg alt=\"\" height=\"30\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33186/b397e6c0b5a203c49c70f17400d782ce.png\" style=\"vertical-align: middle;\" width=\"81\" /\u003e. Тогда \u003cstrong\u003eприведенное квадратное уравнение \u003c/strong\u003eимеет вид:\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"29\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33187/ab3652d3deab6efd27b2f16f9257711a.png\" style=\"vertical-align: middle;\" width=\"119\" /\u003e\u003cem\u003e.\u003c/em\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eЗамечание\u003c/em\u003e. В приведенной форме квадратного уравнения видно, что квадратное уравнение можно задать всего двумя числами: \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33188/9af908a1f16814b9d6ac1e6b9033ad1d.png\" style=\"vertical-align: middle;\" width=\"37\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 2 (продолжение). \u003c/em\u003eУкажем коэффициенты, которые задают приведенное квадратное уравнение \u003cimg alt=\"\" height=\"30\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33183/481041be15e09d91bffa7286e88ffcf7.png\" style=\"vertical-align: middle;\" width=\"112\" /\u003e. \u003cimg alt=\"\" height=\"30\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33189/caa3c036e36af48e2286d1e53c5d9173.png\" style=\"vertical-align: middle;\" width=\"51\" /\u003e, \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33190/a60298b31112dc57c7d8da93796d6f3e.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e. Эти коэффициенты также указываются с учетом знака. Эти же два числа задают и соответствующее неприведенное квадратное уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33177/3594394d990061f7e5da9381ddb78089.png\" style=\"vertical-align: middle;\" width=\"120\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eЗамечание\u003c/em\u003e. Соответствующие неприведенное и приведенное квадратные уравнения являются одинаковыми, т.е. имеют одинаковые наборы корней.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003ch3\u003e3. Неполные квадратные уравнения\u003c/h3\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОпределение\u003c/em\u003e. Некоторые из коэффициентов \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33191/814141719be3c105c774d123fcb3620a.png\" style=\"vertical-align: middle;\" width=\"52\" /\u003e\u0026nbsp;в неприведенной форме или \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33192/853f4114a5111a9a2a0067f3cd2067f1.png\" style=\"vertical-align: middle;\" width=\"53\" /\u003e\u0026nbsp;в приведенной форме квадратного уравнения могут равняться нулю. В таком случае квадратное уравнение называют \u003cstrong\u003eнеполным\u003c/strong\u003e. Если же все коэффициенты ненулевые, то квадратное уравнение называют \u003cstrong\u003eполным\u003c/strong\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003eСуществует несколько видов неполного квадратного уравнения.\u003c/p\u003e\r\n\r\n\u003cp\u003e1) \u003cimg alt=\"\" height=\"35\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33193/7576767968d52d98eef73ffe9df8316b.png\" style=\"vertical-align: middle;\" width=\"99\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eЕсли решение полного квадратного уравнения мы пока не рассматривали, то решить неполное мы легко сможем уже известными нам методами.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОпределение. \u003c/em\u003e\u003cstrong\u003eРешить квадратное уравнение \u003c/strong\u003e\u0026ndash; значит найти все значения переменной \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33174/75200300ecaa84907c16ff2e2a27fb1f.png\" style=\"vertical-align: middle;\" width=\"9\" /\u003e\u0026nbsp;(корни уравнения), при которых данное уравнение обращается в верное числовое равенство, или установить, что таких значений нет.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 3. \u003c/em\u003eРассмотрим пример указанного вида неполных квадратных уравнений. Решить уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33194/a5dc7d2bd2f1d1df7809093324d7acd1.png\" style=\"vertical-align: middle;\" width=\"92\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eРешение. \u003c/em\u003eВынесем общий множитель \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33195/0ba6cde29c89d1c0ac5683af02e9108f.png\" style=\"vertical-align: middle;\" width=\"98\" /\u003e. Уравнения такого типа мы умеем решать по следующему принципу: \u003cem\u003eпроизведение равно нулю тогда и только тогда, когда один из множителей равен нулю, а другой при этом значении переменной существует\u003c/em\u003e. Таким образом:\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33196/ab3693f440b90141914dceb85478bec5.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e\u0026nbsp;или \u003cimg alt=\"\" height=\"30\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33197/5854aa466e405d67565b08a9006b4d35.png\" style=\"vertical-align: middle;\" width=\"205\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОтвет.\u003c/em\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33198/5da66364af0e2d556ca5c1621ece7f74.png\" style=\"vertical-align: middle;\" width=\"9\" /\u003e; \u003cimg alt=\"\" height=\"30\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33199/840a92d9dabf3c6c13bc13ac304d2249.png\" style=\"vertical-align: middle;\" width=\"7\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e2) \u003cimg alt=\"\" height=\"36\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33200/dc39b784b865322c4fcc7056830838fc.png\" style=\"vertical-align: middle;\" width=\"89\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 4. \u003c/em\u003eРешить уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33201/94fad48ae5b83472f2b8030043bb20c8.png\" style=\"vertical-align: middle;\" width=\"83\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eРешение. \u003c/em\u003e1 способ. Разложим на множители по формуле разности квадратов\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33202/32a40b62aad08e1d4cc184558915ec8a.png\" style=\"vertical-align: middle;\" width=\"130\" /\u003e, следовательно, аналогично предыдущему примеру \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33203/02cb4048746d1f1ecbe1e5f43e33ce59.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e\u0026nbsp;или \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33204/40fc92d690d8ee19dc388d2181736ec1.png\" style=\"vertical-align: middle;\" width=\"51\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e2 способ. Перенесем свободный член вправо \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33205/cf9d4491fbb2d4c652f39d7a1209abc3.png\" style=\"vertical-align: middle;\" width=\"55\" /\u003e\u0026nbsp;и извлечем квадратный корень из обеих частей \u003cimg alt=\"\" height=\"24\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33206/e3bc46dea5644d60ac38d7d5b04f424c.png\" style=\"vertical-align: middle;\" width=\"221\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОтвет\u003c/em\u003e. \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33207/dd07c69bdd46a46986f1eaa4c80919d9.png\" style=\"vertical-align: middle;\" width=\"21\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 5. \u003c/em\u003eРешить уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33208/e40d99691b56ec34d2281049bdd4a8a2.png\" style=\"vertical-align: middle;\" width=\"92\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eРешение. \u003c/em\u003eПеренесем свободный член вправо \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33192/853f4114a5111a9a2a0067f3cd2067f1.png\" style=\"vertical-align: middle;\" width=\"76\" /\u003e, но \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33210/169bb60bf2f5ec757184746c1e0e416e.png\" style=\"vertical-align: middle;\" width=\"124\" /\u003e, т.е. в уравнении неотрицательное число приравнивается к отрицательному, что не имеет смысла ни при каких значениях переменной, следовательно, корней нет.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОтвет.\u003c/em\u003e Корней нет.\u003c/p\u003e\r\n\r\n\u003cp\u003e3) \u003cimg alt=\"\" height=\"37\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33211/19d345c4c9a2f82a24dfd4139981fce2.png\" style=\"vertical-align: middle;\" width=\"89\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 6\u003c/em\u003e.Решить уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33212/2884868c104ee5446fd8bff4230d703c.png\" style=\"vertical-align: middle;\" width=\"55\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eРешение\u003c/em\u003e. Разделим обе части уравнения на 7: \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33213/7723bcfe24ef45654b8fba6ec0e2fbe2.png\" style=\"vertical-align: middle;\" width=\"108\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОтвет\u003c/em\u003e. 0.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003ch3\u003e4. Задачи, которые сводятся к квадратным уравнениям\u003c/h3\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003eРассмотрим примеры, в которых сначала необходимо привести квадратное уравнение к стандартной форме, а затем уже его решать.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 7\u003c/em\u003e. Решить уравнение \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33214/ed01fd72735580d689fa6511c8ebe9c6.png\" style=\"vertical-align: middle;\" width=\"193\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eРешение\u003c/em\u003e. Для приведения квадратного уравнения к стандартной форме необходимо перенести все слагаемые в одну сторону, например, в левую и привести подобные.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33215/86db855609e7693358d9b4a7bdad787e.png\" style=\"vertical-align: middle;\" width=\"581\" /\u003e\u003cem\u003e.\u003c/em\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003eПолучено неполное квадратное уравнение, которое мы уже умеем решать, получаем, что \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33196/ab3693f440b90141914dceb85478bec5.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e\u0026nbsp;или \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33216/a9083f945a39524f690195138b087faf.png\" style=\"vertical-align: middle;\" width=\"128\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОтвет\u003c/em\u003e. \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33217/aec4c5f788256646edd82e10eac403a3.png\" style=\"vertical-align: middle;\" width=\"25\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eПример 8 (текстовая задача)\u003c/em\u003e. Произведение двух последовательных натуральных чисел в два раза больше квадрата меньшего из них. Найдите эти числа.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eРешение\u003c/em\u003e. Текстовые задачи, как правило, решаются по следующему алгоритму.\u003c/p\u003e\r\n\r\n\u003cp\u003e1) \u003cstrong\u003eСоставление математической модели\u003c/strong\u003e. На этом этапе необходимо перевести текст задачи на язык математических символов (составить уравнение).\u003c/p\u003e\r\n\r\n\u003cp\u003eПусть некое первое натуральное число обозначим неизвестной \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33218/c61e525a440a036de51564d82830055c.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e, тогда следующее за ним (числа последовательные) будет \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33219/b7fe750ee37c54a1420c0eec61e6e7af.png\" style=\"vertical-align: middle;\" width=\"81\" /\u003e. Меньшее из этих чисел \u0026ndash; это число \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33174/75200300ecaa84907c16ff2e2a27fb1f.png\" style=\"vertical-align: middle;\" width=\"9\" /\u003e, запишем уравнение по условию задачи:\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33220/3d378f2536b54ce24368ca2ba7e0a327.png\" style=\"vertical-align: middle;\" width=\"106\" /\u003e, где \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33218/c61e525a440a036de51564d82830055c.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e. Математическая модель составлена.\u003c/p\u003e\r\n\r\n\u003cp\u003e2) \u003cstrong\u003eРабота с математической моделью\u003c/strong\u003e. На этом этапе полученное уравнение необходимо решить.\u003c/p\u003e\r\n\r\n\u003cp\u003eРаскроем скобки \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33221/d4670ab4f7403245c37085c5cd574540.png\" style=\"vertical-align: middle;\" width=\"342\" /\u003e, обычно, для удобства расчетов принято приводить квадратное уравнение к положительному старшему коэффициенту, что мы и сделаем домножением обеих частей уравнения на \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33222/1a73d253b65aefb5ae4b841927015f8d.png\" style=\"vertical-align: middle;\" width=\"21\" /\u003e: \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33223/eb46dc466db5595590dddab80847a550.png\" style=\"vertical-align: middle;\" width=\"186\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eПолучаем корни \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33196/ab3693f440b90141914dceb85478bec5.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e\u0026nbsp;и \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33224/5355be90efefe0dbe5f75417f355724c.png\" style=\"vertical-align: middle;\" width=\"128\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003eПоскольку корень \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33196/ab3693f440b90141914dceb85478bec5.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e\u0026nbsp;не является натуральным, то подходит только один ответ \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33225/ef23c5dc02dd1537990d0e49278708fc.png\" style=\"vertical-align: middle;\" width=\"39\" /\u003e. Это меньшее число, а большее равно 2.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003eОтвет\u003c/em\u003e. 1; 2.\u003c/p\u003e\r\n\r\n\u003cp\u003eНа следующем уроке мы выведем формулы вычисления корней квадратного уравнения.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cem\u003e\u0026nbsp;\u003c/em\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cstrong\u003eСписок рекомендованной литературы\u003c/strong\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e1. Башмаков М.И. Алгебра 8 класс. М.: Просвещение. 2004 г.\u003c/p\u003e\r\n\r\n\u003cp\u003e2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. М.: Просвещение. 2010 г.\u003c/p\u003e\r\n\r\n\u003cp\u003e3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. М.: Просвещение. 2006 г.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cstrong\u003eРекомендованные ссылки на ресурсы интернет\u003c/strong\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e1. ЕГЭ по математике (\u003ca href=\"http://uztest.ru/simulator?IdParg=2213\"\u003eИсточник\u003c/a\u003e).\u003c/p\u003e\r\n\r\n\u003cp\u003e2. Как просто сделать все (\u003ca href=\"http://www.kakprosto.ru/kak-17113-kak-reshat-nepolnoe-kvadratnoe-uravnenie\"\u003eИсточник\u003c/a\u003e).\u003c/p\u003e\r\n\r\n\u003cp\u003e3. Кирилюк Римма Станиславовна (\u003ca href=\"http://kirilyuk-rim.narod.ru/index.files/page0003.htm\"\u003eИсточник\u003c/a\u003e).\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n\r\n\u003cp\u003e\u003cstrong\u003eРекомендованное домашнее задание\u003c/strong\u003e\u003c/p\u003e\r\n\r\n\u003cp\u003e1. № 423, 425, 426, 490, 492, 504, 511. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. М.: Просвещение. 2010 г.\u003c/p\u003e\r\n\r\n\u003cp\u003e2. Преобразуйте уравнения к виду \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33226/3d7dce3724cf27de5d74a2d44d2671e6.png\" style=\"vertical-align: middle;\" width=\"119\" /\u003e\u0026nbsp;и укажите старший коэффициент, второй коэффициент и свободный член: а) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33227/4a3e3873ccd1eaae7c533eadbe51c81c.png\" style=\"vertical-align: middle;\" width=\"130\" /\u003e; б) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33228/966fa1e6979d780282e50ab426b78a22.png\" style=\"vertical-align: middle;\" width=\"254\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e3. Выполните преобразования квадратных уравнений, чтобы они стали приведенными: а) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33229/5b370ad328cb5338d743b3e0b3fb9f61.png\" style=\"vertical-align: middle;\" width=\"141\" /\u003e; б) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33230/1c2043431b641ba0da50d93e60ad185e.png\" style=\"vertical-align: middle;\" width=\"120\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e4. Решите уравнения: а) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33231/b14281c5c3ad6f46ad388a1a03e2f5ab.png\" style=\"vertical-align: middle;\" width=\"83\" /\u003e; б) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33232/382dc141ed1506b56bd6dfb4473b4778.png\" style=\"vertical-align: middle;\" width=\"74\" /\u003e; в) \u003cimg alt=\"\" height=\"22\" src=\"https://static-interneturok.cdnvideo.ru/content/konspekt_image/33233/9fc261abd11b2b12e786fe8d6100bd1a.png\" style=\"vertical-align: middle;\" width=\"104\" /\u003e.\u003c/p\u003e\r\n\r\n\u003cp\u003e5. Если от квадрата отрезать треугольник с площадью 59 см\u003csup\u003e2\u003c/sup\u003e, то площадь оставшейся части будет равна 85 см\u003csup\u003e2\u003c/sup\u003e. Найдите сторону квадрата.\u003c/p\u003e\r\n\r\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\r\n","seoContent":"Квадратные уравнения. Основные понятия (алгебра 8 класс)","prevLesson":{"index":3,"url":"https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven/5042"},"nextLesson":{"index":5,"url":"https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven/5044"},"siteUrl":"https://lc.rt.ru/classbook/","themeUrl":"https://lc.rt.ru/classbook/matematika-8-klass"}" data-hydrate="t" data-react-cache-id="LessonContent-0"} ::: {.lesson__pages-wr} - Видео - Тренажер - Теория [Заметили ошибку?]{.lesson__error} ::: ::: {.lesson__theory} ::: {.lesson__theory-block} ###     **Тема:** **Квадратные уравнения.**   **Урок:** **Квадратные уравнения. Основные понятия**   ### 1. Определение квадратного уравнения     *Определение.* **Квадратным уравнением** называется уравнение вида   ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1usi8ke){width="199" height="28"}.  фиксированные действительные числа, которые задают квадратное уравнение. Эти числа имеют определенные названия: ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-ajn9mj){width="25" height="22"} старший коэффициент (множитель при ); ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-11ql0bo){width="24" height="22"} второй коэффициент (множитель при ); ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1uu92k3){width="23" height="22"} свободный член (число без множителя-переменной). *Замечание.* Следует понимать, что указанная последовательность записи слагаемых в квадратном уравнении является стандартной, но не обязательной, и в случае их перестановки необходимо уметь определять численные коэффициенты не по их порядковому расположению, а по принадлежности к переменным. *Определение.* Выражение  носит название **квадратный трехчлен**. *Пример 1.* Задано квадратное уравнение ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1tzjw5r){width="120" height="22"}. Его коэффициенты:  старший коэффициент; ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-8byngg){width="51" height="22"} второй коэффициент (обратите внимание, что коэффициент указывается со знаком передним);  свободный член.   ### 2. Приведенные квадратные уравнения     *Определение.* Если ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-17da2m3){width="39" height="22"}, то квадратное уравнение называется **неприведенным**, а если , то квадратное уравнение называется **приведенным**.   *Пример 2.* Привести квадратное уравнение ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1tzjw5r){width="120" height="22"}. Разделим обе его части на 2: . *Замечание.* Как видно из предыдущего примера, делением на старший коэффициент мы не изменили уравнение, но изменили его форму (сделали приведенным), аналогично его можно было и умножить на какое-нибудь ненулевое число. Таким образом, квадратное уравнение задается не единственной тройкой чисел, а говорят, что **задается с точностью до ненулевого множества коэффициентов**. *Определение.* **Приведенное квадратное уравнение** получают из неприведенного путем деления на старший коэффициент ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-ukp7bj){width="39" height="22"}, и оно имеет вид:. Приняты следующие обозначения: ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-13q3wmx){width="81" height="30"}. Тогда **приведенное квадратное уравнение** имеет вид: *.* *Замечание*. В приведенной форме квадратного уравнения видно, что квадратное уравнение можно задать всего двумя числами: ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1daxvds){width="37" height="22"}. *Пример 2 (продолжение).* Укажем коэффициенты, которые задают приведенное квадратное уравнение. ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1vbkzp3){width="51" height="30"},. Эти коэффициенты также указываются с учетом знака. Эти же два числа задают и соответствующее неприведенное квадратное уравнение ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1tzjw5r){width="120" height="22"}. *Замечание*. Соответствующие неприведенное и приведенное квадратные уравнения являются одинаковыми, т.е. имеют одинаковые наборы корней.   ### 3. Неполные квадратные уравнения     *Определение*. Некоторые из коэффициентов  в неприведенной форме или ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-j73dl9){width="53" height="22"} в приведенной форме квадратного уравнения могут равняться нулю. В таком случае квадратное уравнение называют **неполным**. Если же все коэффициенты ненулевые, то квадратное уравнение называют **полным**.   Существует несколько видов неполного квадратного уравнения. 1\). Если решение полного квадратного уравнения мы пока не рассматривали, то решить неполное мы легко сможем уже известными нам методами. *Определение.* **Решить квадратное уравнение** -- значит найти все значения переменной ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-qnmgie){width="9" height="22"} (корни уравнения), при которых данное уравнение обращается в верное числовое равенство, или установить, что таких значений нет. *Пример 3.* Рассмотрим пример указанного вида неполных квадратных уравнений. Решить уравнение. *Решение.* Вынесем общий множитель ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-i2d0lw){width="98" height="22"}. Уравнения такого типа мы умеем решать по следующему принципу: *произведение равно нулю тогда и только тогда, когда один из множителей равен нулю, а другой при этом значении переменной существует*. Таким образом:  или ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-klstqp){width="205" height="30"}. *Ответ.*; ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-lckk1l){width="7" height="30"}. 2\). *Пример 4.* Решить уравнение ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1il84og){width="83" height="22"}. *Решение.* 1 способ. Разложим на множители по формуле разности квадратов , следовательно, аналогично предыдущему примеру ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-tnvhc8){width="39" height="22"} или. 2 способ. Перенесем свободный член вправо ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-7qaalc){width="55" height="22"} и извлечем квадратный корень из обеих частей. *Ответ*. ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-19z87nj){width="21" height="22"}. *Пример 5.* Решить уравнение. *Решение.* Перенесем свободный член вправо ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-j73dl9){width="76" height="22"}, но , т.е. в уравнении неотрицательное число приравнивается к отрицательному, что не имеет смысла ни при каких значениях переменной, следовательно, корней нет. *Ответ.* Корней нет. 3) ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-jpad88){width="89" height="37"}. *Пример 6*.Решить уравнение. *Решение*. Разделим обе части уравнения на 7: ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-5dj94u){width="108" height="22"}. *Ответ*. 0.   ### 4. Задачи, которые сводятся к квадратным уравнениям     Рассмотрим примеры, в которых сначала необходимо привести квадратное уравнение к стандартной форме, а затем уже его решать.   *Пример 7*. Решить уравнение. *Решение*. Для приведения квадратного уравнения к стандартной форме необходимо перенести все слагаемые в одну сторону, например, в левую и привести подобные. ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-f49ity){width="581" height="22"}*.* Получено неполное квадратное уравнение, которое мы уже умеем решать, получаем, что  или ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1y4youf){width="128" height="22"}. *Ответ*.. *Пример 8 (текстовая задача)*. Произведение двух последовательных натуральных чисел в два раза больше квадрата меньшего из них. Найдите эти числа. *Решение*. Текстовые задачи, как правило, решаются по следующему алгоритму. 1\) **Составление математической модели**. На этом этапе необходимо перевести текст задачи на язык математических символов (составить уравнение). Пусть некое первое натуральное число обозначим неизвестной ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1nc3xuj){width="39" height="22"}, тогда следующее за ним (числа последовательные) будет. Меньшее из этих чисел -- это число ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-qnmgie){width="9" height="22"}, запишем уравнение по условию задачи: , где ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1nc3xuj){width="39" height="22"}. Математическая модель составлена. 2\) **Работа с математической моделью**. На этом этапе полученное уравнение необходимо решить. Раскроем скобки , обычно, для удобства расчетов принято приводить квадратное уравнение к положительному старшему коэффициенту, что мы и сделаем домножением обеих частей уравнения на ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-6qjdxt){width="21" height="22"}:. Получаем корни ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-29v44q){width="39" height="22"} и. Поскольку корень ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-29v44q){width="39" height="22"} не является натуральным, то подходит только один ответ. Это меньшее число, а большее равно 2. *Ответ*. 1; 2. На следующем уроке мы выведем формулы вычисления корней квадратного уравнения. \* * **Список рекомендованной литературы** 1\. Башмаков М.И. Алгебра 8 класс. М.: Просвещение. 2004 г. 2\. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. М.: Просвещение. 2010 г. 3\. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. М.: Просвещение. 2006 г.   **Рекомендованные ссылки на ресурсы интернет** 1\. ЕГЭ по математике ([Источник](http://uztest.ru/simulator?IdParg=2213)). 2\. Как просто сделать все ([Источник](http://www.kakprosto.ru/kak-17113-kak-reshat-nepolnoe-kvadratnoe-uravnenie)). 3\. Кирилюк Римма Станиславовна ([Источник](http://kirilyuk-rim.narod.ru/index.files/page0003.htm)).   **Рекомендованное домашнее задание** 1\. № 423, 425, 426, 490, 492, 504, 511. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. 5 издание. М.: Просвещение. 2010 г. 2\. Преобразуйте уравнения к виду ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1riecfg){width="119" height="22"} и укажите старший коэффициент, второй коэффициент и свободный член: а) ; б) ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-cu6gbm){width="254" height="22"}. 3\. Выполните преобразования квадратных уравнений, чтобы они стали приведенными: а) ; б) ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-1udej9u){width="120" height="22"}. 4\. Решите уравнения: а) ; б) ![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/open-uri20150909-7816-m4qney){width="74" height="22"}; в). 5\. Если от квадрата отрезать треугольник с площадью 59 см^2^, то площадь оставшейся части будет равна 85 см^2^. Найдите сторону квадрата.   ::: ::: ::: {.lesson__actions} [Урок 3](https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven/5042){.lesson__prev}[![](./%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F.%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%208%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%20%D0%BE%D0%BD%D0%BB%D0%B0%D0%B9%D0%BD-%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%A0%D0%BE%D1%81%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D0%BE%D0%BC%20%D0%9B%D0%B8%D1%86%D0%B5%D0%B9%20_%20%D0%A2%D1%80%D0%B5%D0%BD%D0%B0%D0%B6%D0%B5%D1%80%D1%8B%20%D0%B8%20%D1%80%D0%B0%D0%B7%D0%B1%D0%BE%D1%80%20%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B9_files/squares-4203880d5657219354e3546598927e6e.svg)Вернуться к теме](https://lc.rt.ru/classbook/matematika-8-klass){.lesson__to-theme}[Урок 5](https://lc.rt.ru/classbook/matematika-8-klass/kvadratnye-uravneniya-profilnyi-uroven/5044){.lesson__next} ::: ::: {.modal} ::: {.modal-container} ::: {.modal-close-btn} ::: ### Заметили ошибку? Расскажите нам об ошибке, и мы ее исправим. Отправить ::: ::: ::: {.lesson__seo} ::: {.lesson__seo-content} Квадратные уравнения. Основные понятия (алгебра 8 класс) ::: ::: ::: ::: ::: ::: ::: {.footer__container} ::: {.footer__container__top} ::: {.top__left} ::: {.top__left__menu} ::: {.top__left__menu__copyright} © 2024 ПАО «Ростелеком». 0+ ::: ::: {.top__left__menu__content} ::: {.item__link} [О Нас](https://www.rt.ru/lc/about){.footer__link} ::: ::: {.item__link} [Партнеры](https://www.rt.ru/lc/partners){.footer__link} ::: ::: {.item__link} [Блог](https://blog.lc.rt.ru/){.footer__link} ::: ::: {.item__link} [Преподаватели](https://www.rt.ru/lc/teachers){.footer__link} ::: ::: ::: ::: {.top__left__block} ::: {.top__left__block__label} Подробнее о подписках: ::: ::: {.top__left__block__links} ::: {.block__item} [Для 1-4 классов](https://www.rt.ru/lc/elementary){.block__link} ::: ::: {.block__item} [Для 5-8 классов](https://www.rt.ru/lc/middle){.block__link} ::: ::: {.block__item} [Для 9-11 классов](https://www.rt.ru/lc/high){.block__link} ::: ::: ::: ::: ::: {.top__right} ::: {.top__right__label} Служба поддержки: ::: [8 800 350-03-35](tel:88003500335){.footer__support-number} ::: ::: ::: {.footer__container__bottom} ::: {.bottom__left} ::: {.bottom__left__content} ::: {.bottom__left__content__item} [Пользовательское соглашение](https://lc.rt.ru//files/user_agreement.pdf){.bottom__link} ::: ::: {.bottom__left__content__item} [Персональные данные](https://lc.rt.ru//files/personal_agreement.pdf){.bottom__link} ::: ::: {.bottom__left__content__item} [Лицензии](https://lc.rt.ru//files/license.pdf){.bottom__link} ::: ::: ::: ::: {.bottom_right} По вопросам партнёрства пишите нам на:  ::: ::: ::: :::

Use Quizgecko on...
Browser
Browser