Irrigation Design 2023-2024 Past Paper PDF

Summary

This document discusses irrigation design, including methods of water lifting, conveyance, and application systems for agricultural use. It covers different types of irrigation systems and their suitability for various soil and environmental conditions. The document also touches upon factors like frost protection and yield optimization.

Full Transcript

‫ﻛﻠ ﺔ اﻟ راﻋﺔ‬ ‫ﺔ‬ ‫اﻟ ار ﺔ واﻟ‬ ‫ﻫ ﺳﺔ اﻟ‬ ‫ﻗ‬ ‫ﻣ ﺎﺿ ات‬ ‫ﻓﻲ‬ ‫اﻟ ﯾ‬ ‫اﻟ‬ ‫وﺗ ﻔ ﻧ‬ ‫ﺗ‬ ‫إﻋـــــــــــــــــــــ اد‬ ‫ﺎل اﻟ‬...

‫ﻛﻠ ﺔ اﻟ راﻋﺔ‬ ‫ﺔ‬ ‫اﻟ ار ﺔ واﻟ‬ ‫ﻫ ﺳﺔ اﻟ‬ ‫ﻗ‬ ‫ﻣ ﺎﺿ ات‬ ‫ﻓﻲ‬ ‫اﻟ ﯾ‬ ‫اﻟ‬ ‫وﺗ ﻔ ﻧ‬ ‫ﺗ‬ ‫إﻋـــــــــــــــــــــ اد‬ ‫ﺎل اﻟ‬ ‫أ‪.‬د‪ /‬ﻣﻌ‬ ‫أﺳ ﺎذ اﻟﻬ ﺳﺔ اﻟ ار ﺔ‬ ‫ﺔ‬ ‫اﻟ ار ﺔ واﻟ‬ ‫ﻫ ﺳﺔ اﻟ‬ ‫ﻗ‬ ‫ﻠ ﺔ اﻟ راﻋﺔ‪-‬ﺟﺎﻣﻌﺔ دﻣ ﺎ‬ ‫‪٢٠٢٤/٢٠٢٣‬‬ ‫اﺳ اﻟ ﺎﻟ ‪..............................................................................................:‬‬ ‫اﻟﻔ ﻗﺔ‪....................................................................................................:‬‬ ‫ﻋﺔ‪............................................................................................:‬‬ ‫رﻗ اﻟ‬ ‫اﻟ ﻗ اﻷﻛﺎد ﻲ‪...........................................................................................:‬‬ ‫وﻧﻲ‪..........................................................................................:‬‬ ‫اﻻﻟ‬ ‫اﻟ‬ ‫اﻟ رﻋﻲ وأﻧ اﻋﻬﺎ‬ ‫اﻟ‬ ‫اﻟ ﺎب اﻷول‪ :‬و ﺎﺋﻒ ﻧ‬ ‫ﻣﻘﺩﻣﺔ ‪introduction :‬‬ ‫ﻳﺟﺏ ﺃﻥ ﻳﻭﻓﺭ ﺍﻟﺭﻱ ﻛﻣﻳﺎﺕ ﺍﻟﻣﻳﺎﻩ ﺑﻣﻌﺩﻻﺕ ﻭﻛﻣﻳﺎﺕ ﻭﻓﻰ ﺍﻷﻭﻗﺎﺕ ﺍﻟﺗﻲ ﺗﻔﻲ ﺑﺎﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻱ ﻟﻠﻧﺑﺎﺕ‬ ‫ﻓﻲ ﺍﻟﻣﺯﺭﻋﺔ‪.‬ﻭﻧﻅﻡ ﺍﻟﺭﻱ ﺗﻘﻭﻡ ﺑﺗﺣﻭﻳﻝ ﺍﻟﻣﺎء ﻣﻥ ﻣﺻﺩﺭﻩ ﺍﻟﻰ ﺍﻟﻣﻧﺎﻁﻖ ﺍﻟﻣﺯﺭﻭﻋﺔ ﺛﻡ ﺗﻭﺯﻳﻌﻬﺎ ﻋﻠﻰ ﺃﺟﺯﺍء‬ ‫ﺍﻟﺣﻘﻝ ﻭﺍﺿﺎﻓﺗﻬﺎ ﺍﻟﻰ ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ‪.‬ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﻟﻰ ﺫﻟﻙ ﻳﺟﺏ ﺃﻥ ﻳﺗﻭﺍﻓﺭ ﺑﺎﻟﻧﻅﺎﻡ ﺇﻣﻛﺎﻧﺎﺕ ﺗﺳﻬﻝ ﺇﺩﺍﺭﺗﻪ‬ ‫ﻭﺍﻟﺗﺣﻛﻡ ﻓﻲ ﻣﻌﺩﻻﺕ ﺍﻟﺳﺭﻳﺎﻥ‪.‬‬ ‫ﻫﺫﺍ ﺍﻟﺟﺯء ﻳﻭﺿﺢ ﻧﻅﻡ ﺍﻟﺭﻱ ﻭﺗﺻﻣﻳﻣﻬﺎ ﻭﺍﻟﺧﻁﻭﺍﺕ ﺍﻟﻭﺍﺟﺏ ﺍﺗﺑﺎﻋﻬﺎ ﻟﺗﺻﻣﻳﻡ ﺍﻟﻧﻅﺎﻡ ﻭﺩﻭﺭ ﺍﻟﻣﺻﻣﻡ‬ ‫ﻛﺫﻟﻙ ﺍﻟﺟﻭﺍﻧﺏ ﺍﻻﻗﺗﺻﺎﺩﻳﺔ ﺍﻟﻭﺍﺟﺏ ﻣﺭﺍﻋﺎﺗﻬﺎ‪.‬‬ ‫‪ ١-١‬ﻭﻅﺎﺋﻑ ﻧﻅﻡ ﺍﻟﺭﻯ ﺍﻟﻣﺯﺭﻋﻲ‪Functions of farm irrigation systems :‬‬ ‫ﺍﻟﻭﻅﻳﻔﺔ ﺍﻷﺳﺎﺳﻳﺔ ﻟﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﻣﺯﺭﻋﻲ ﻫﻲ‪ :‬ﺇﻣﺩﺍﺩ ﺍﻟﻣﺣﺎﺻﻳﻝ ﺑﻣﺎء ﺍﻟﺭﻱ ﺑﻛﻣﻳﺎﺕ ﻣﻧﺎﺳﺑﺔ ﻓﻲ ﺍﻟﻭﻗﺕ‬ ‫ﺍﻟﺫﻱ ﺗﺣﺗﺎﺟﻪ ﻭﻳﺟﺏ ﺃﻥ ﺗﺳﻳﺭ ﻫﺫﻩ ﺍﻟﻭﻅﻳﻔﺔ ﻋﻠﻰ ﺍﻟﺗﻭﺍﺯﻱ ﻣﻊ ﻣﺟﻣﻭﻋﺔ ﻣﻥ ﺍﻟﻭﻅﺎﺋﻑ ﺍﻷﻭﻟﻳﺔ ﺍﻷﺧﺭﻯ ﺍﻟﺗﻲ‬ ‫ﺗﺷﻣﻝ‪.‬‬ ‫‪ ‬ﺗﺣﻭﻳﻝ ﺍﻟﻣﺎء ﻣﻥ ﻣﺻﺩﺭﻩ‪.‬‬ ‫‪ ‬ﺗﻭﺻﻳﻝ ﺍﻟﻣﺎء ﻟﻠﺣﻘﻭﻝ ﺑﺎﻟﻣﺯﺭﻋﺔ‪.‬‬ ‫‪ ‬ﺗﻭﺯﻳﻌﻬﺎ ﻋﻠﻰ ﺍﻟﺣﻘﻭﻝ‪.‬‬ ‫‪ ‬ﺇﻋﻁﺎء ﻭﺳﻳﻠﺔ ﻣﻧﺎﺳﺑﺔ ﻟﻠﺗﺣﻛﻡ ﻓﻲ ﺍﻟﺗﺻﺭﻑ‪.‬‬ ‫ﻭﻫﻧﺎﻙ ﻣﺟﻣﻭﻋﺔ ﺃﺧﺭﻯ ﻣﻥ ﺍﻟﻭﻅﺎﺋﻑ ﺍﻟﺗﻲ ﻳﻣﻛﻥ ﻟﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﻘﻳﺎﻡ ﺑﻬﺎ ﺑﺣﻳﺙ ﻳﻣﻛﻥ ﺃﻥ ﺗﺳﺗﺧﺩﻡ ﻧﻅﻡ‬ ‫ﺍﻟﺭﻱ ﻟﻠﻘﻳﺎﻡ ﺑﻭﻅﻳﻔﺔ ﺗﺭﻁﻳﺏ ﺍﻟﺗﺭﺑﺔ ﻭﺍﻟﻣﺣﺻﻭﻝ‪ ،‬ﺣﻣﺎﻳﺔ ﺍﻟﻣﺣﺻﻭﻝ ﻣﻥ ﺍﻟﺻﻘﻳﻊ‪ ،‬ﺍﻟﺗﺣﻛﻡ ﻓﻲ ﺍﻟﺑﺧﺭ ﺍﻟﻧﺎﺗﺞ ﻣﻥ‬ ‫ﺍﻟﺭﻳﺎﺡ‪ ،‬ﺇﻧﺑﺎﺕ ﺍﻟﺑﺫﻭﺭ‪ ،‬ﺇﺫﺍﺑﺔ ﺍﻟﻣﻭﺍﺩ ﺍﻟﻛﻳﻣﺎﻭﻳﺔ ﻭﻏﺳﻝ ﺍﻟﻣﺧﻠﻔﺎﺕ ﺍﻟﺳﺎﺋﻠﺔ‪.‬‬ ‫‪ ١ -١-١‬ﺗﺭﻁﻳﺏ ﺍﻟﺗﺭﺑﺔ ﻭﺍﻟﻣﺣﺻﻭﻝ ‪:Soil and crop moisturizing‬‬ ‫ﺗﺅﺩﻯ ﻋﻣﻠﻳﺔ ﺍﻟﺭﺵ ﺍﻟﺗﻲ ﺗﻌﺗﺑﺭ ﺑﻣﺛﺎﺑﺔ ﻣﺣﺎﻛﺎﻩ ﻟﺳﻘﻭﻁ ﺍﻷﻣﻁﺎﺭ ﺍﻟﻰ ﺧﻔﺽ ﺩﺭﺟﺔ ﺣﺭﺍﺭﺓ ﺍﻟﻬﻭﺍء ﻛﺫﻟﻙ‬ ‫ﻓﺈﻥ ﺍﻟﺑﺧﺭ ﺧﻼﻝ ﺍﻟﺭﺵ ﻳﺅﺩﻯ ﺍﻟﻰ ﺗﻘﻠﻳﻝ ﻓﻘﺩ ﺍﻟﻣﺎء ﻣﻥ ﺍﻟﻧﺑﺎﺕ‪.‬ﻭﻭﺟﺩ ﺃﻥ ﺍﻟﺗﺭﻁﻳﺏ ﻭﺣﻣﺎﻳﺔ ﺍﻟﻧﺑﺎﺗﺎﺕ ﻣﻥ‬ ‫ﺍﻟﻣﻭﺟﺎﺕ ﺍﻟﺣﺎﺭﺓ ﺍﻟﻣﻔﺎﺟﺋﺔ ﻳﺯﻳﺩ ﻣﻥ ﺍﻧﺗﺎﺝ ﺍﻟﻣﺣﺻﻭﻝ ﻭﺟﻭﺩﺗﻪ ﻟﻠﻌﺩﻳﺩ ﻣﻥ ﺍﻟﻣﺣﺎﺻﻳﻝ ﻛﺎﻟﺗﻔﺎﺡ ﻭﺍﻟﻔﻭﻝ ﻭﺍﻟﻛﺭﻳﺯ‬ ‫ﻭﺍﻟﻘﻁﻥ ﻭﺍﻟﺧﻳﺎﺭ ﻭﺍﻟﺯﻫﻭﺭ ﻭﺍﻟﻌﻧﺏ ﻭﺍﻟﺑﻁﺎﻁﺱ ﻭﺍﻟﺯﻳﺗﻭﻥ ﻭﺑﻧﺟﺭ ﺍﻟﺳﻛﺭ ﻭﺍﻟﻁﻣﺎﻁﻡ‪.‬‬ ‫‪ ٢ -١-١‬ﺍﻟﺣﻣﺎﻳﺔ ﻣﻥ ﺍﻟﺻﻘﻳﻊ‪Protection against frost:‬‬ ‫ﺗﻡ ﺍﺳﺗﺧﺩﺍﻡ ﻧﻅﻡ ﺍﻟﺭﻱ ﺑﺎﻟﺭﺵ ﻣﻧﺫ ﻓﺗﺭﺓ ﻁﻭﻳﻠﺔ ﻟﺣﻣﺎﻳﺔ ﺍﻟﻧﺑﺎﺗﺎﺕ ﻣﻥ ﺍﻟﺗﺟﻣﺩ ﺧﻼﻝ ﻓﺗﺭﺍﺕ ﺳﻘﻭﻁ ﺍﻟﺟﻠﻳﺩ‪.‬‬ ‫ﻭﺧﻼﻝ ﻫﺫﻩ ﺍﻟﻔﺗﺭﺍﺕ ﺗﻧﺧﻔﺽ ﺩﺭﺟﺔ ﺍﻟﺣﺭﺍﺭﺓ ﻣﻥ ‪ ٠٫٥‬ﺍﻟﻰ ‪º٢‬ﻡ ﻋﻥ ﺍﻟﺣﺭﺍﺭﺓ ﺍﻟﻣﺛﻠﻰ ﻟﻠﻬﻭﺍء ﻛﻣﺎ ﺗﻘﻭﻡ ﺑﺈﺷﻌﺎﻉ‬ ‫ﺍﻟﺣﺭﺍﺭﺓ ﻓﻲ ﺍﻟﻬﻭﺍء‪.‬‬ ‫ﻭﻳﺗﻡ ﺿﺑﻁ ﺩﺭﺟﺔ ﺍﻟﺣﺭﺍﺭﺓ ﻣﻥ ﺧﻼﻝ ﺍﺳﺗﺧﺩﺍﻡ ﻧﻅﻡ ﺍﻟﺭﺵ‪ ،‬ﻭﻛﻠﻣﺎ ﺯﺍﺩﺕ ﺳﺭﻋﺔ ﺍﻟﺭﻳﺎﺡ ﻳﺟﺏ ﺯﻳﺎﺩﺓ‬ ‫ﻣﻌﺩﻝ ﺇﺿﺎﻓﺔ ﺍﻟﻣﺎء ﻋﻥ ﻁﺭﻳﻖ ﺍﻟﻧﻅﺎﻡ ﻟﺗﻌﻭﻳﺽ ﺍﻟﻔﺎﻗﺩ ﻭﻛﺫﻟﻙ ﻋﻧﺩ ﺍﻧﺧﻔﺎﺽ ﺩﺭﺟﺔ ﺣﺭﺍﺭﺓ ﺍﻟﻬﻭﺍء ﺧﺎﺻﺔ‬ ‫ﻟﻠﻣﺣﺎﺻﻳﻝ ﺫﺍﺕ ﺍﻻﺭﺗﻔﺎﻋﺎﺕ‪.‬‬ ‫ﺗﻡ ﺣﻣﺎﻳﺔ ﺍﻟﻔﺭﺍﻭﻟﺔ ﺑﻧﺟﺎﺡ ﻣﻥ ﺍﻟﺻﻘﻳﻊ ﻋﻧﺩ ﺩﺭﺟﺔ ﺣﺭﺍﺭﺓ – ‪º٦‬ﻡ ﻛﺫﻟﻙ ﺍﻟﺑﺭﺳﻳﻡ ﻭﺍﻟﻁﻣﺎﻁﻡ ﻭﺍﻟﻔﻠﻔﻝ‬ ‫ﻭﺍﻟﺗﻔﺎﺡ ﻭﺍﻟﻛﺭﻳﺯ ﻭﺍﻟﻣﻭﺍﻟﺢ ﻛﻣﺎ ﻻﺣﻅﺕ ﺗﻠﻙ ﺍﻟﺩﺭﺍﺳﺎﺕ ﺃﻥ ﺍﻟﺭﺷﺎﺷﺎﺕ ﺍﻟﺗﻲ ﺗﺭﻛﺏ ﺗﺣﺕ ﺍﻷﺷﺟﺎﺭ ﻻ ﺗﻘﻭﻡ‬ ‫ﺑﺗﻭﻓﻳﺭ ﺍﻟﺣﻣﺎﻳﺔ ﺍﻟﻛﺎﻓﻳﺔ ﻣﻥ ﺍﻟﺻﻘﻳﻊ ﻣﻘﺎﺭﻧﺔ ﺑﺎﻟﺗﻲ ﺗﻭﻓﺭﻫﺎ ﺍﻟﺭﺷﺎﺷﺎﺕ ﺍﻟﻣﻭﺟﻭﺩﺓ ﺃﻋﻠﻰ ﺍﻟﺷﺟﺭ‪.‬‬ ‫‪ ٣ -١-١‬ﺗﺄﺧﻳﺭ ﺍﻹﺛﻣﺎﺭ ﻭﻧﻣﻭ ﺍﻟﺑﺭﺍﻋﻡ ‪:Delay of bud growth and fruitage‬‬ ‫ﻗﺩ ﺗﺩﻋﻭ ﺍﻟﺣﺎﺟﺔ ﺍﻟﻰ ﺗﺄﺧﻳﺭ ﻧﻣﻭ ﺍﻟﺑﺭﺍﻋﻡ ﺧﻼﻝ ﻓﺗﺭﺍﺕ ﺍﻟﺻﻘﻳﻊ ﺣﺗﻰ ﺯﻭﺍﻝ ﺫﻟﻙ ﺍﻟﺧﻁﺭ‪.‬ﻭﻳﻣﻛﻥ ﺍﻟﺗﺣﻛﻡ‬ ‫ﻓﻲ ﻣﻳﻌﺎﺩ ﻅﻬﻭﺭ ﺍﻟﺛﻣﺎﺭ ﻋﻥ ﻁﺭﻳﻖ ﺍﺩﺧﺎﻝ ﺍﻟﺑﺭﺍﻋﻡ ﻓﻲ ﺣﺎﻟﺔ ﻛﻣﻭﻥ ﺣﺗﻰ ﻓﺻﻝ ﺍﻟﺭﺑﻳﻊ ﻣﻥ ﺧﻼﻝ ﺍﺳﺗﺧﺩﺍﻡ‬ ‫ﺍﻟﺭﺵ ﻟﺗﺧﻔﻳﺽ ﺩﺭﺟﺔ ﺍﻟﺣﺭﺍﺭﺓ ﻛﻧﺗﻳﺟﺔ ﻹﺣﺩﺍﺙ ﺑﺧﺭ ﻣﻥ ﺧﻼﻝ ﻋﻣﻠﻳﺔ ﺍﻟﺗﺭﺫﻳﺫ ﻣﻣﺎ ﻳﺅﺩﻯ ﺍﻟﻰ ﺗﺄﺧﻳﺭ ﺍﻹﺛﻣﺎﺭ‪.‬‬ ‫‪ ٤ -١-١‬ﺍﻟﺗﺣﻛﻡ ﻓﻰ ﺍﻟﺑﺧﺭ ﺍﻟﻧﺎﺗﺞ ﻋﻥ ﺍﻟﺭﻳﺎﺡ ‪:Controlling wind evaporation loss‬‬ ‫ﻳﻣﻛﻥ ﺍﻟﺗﺣﻛﻡ ﻓﻲ ﺍﻟﺑﺧﺭ ﺍﻟﻧﺎﺗﺞ ﻋﻥ ﺍﻟﺭﻳﺎﺡ ﻓﻲ ﺍﻷﺭﺽ ﻋﺩﻳﻣﺔ ﺍﻟﻐﻁﺎء ﺍﻟﻧﺑﺎﺗﻲ ﻋﻥ ﻁﺭﻳﻖ ﺍﻟﺭﻱ ‪.‬ﻓﺎﻷﺭﺽ‬ ‫ﺍﻟﻣﺑﺗﻠﺔ ﻟﻬﺎ ﻣﻘﺎﻭﻣﺔ ﺃﻛﺑﺭ ﻟﻠﺑﺧﺭ ﺍﻟﻧﺎﺗﺞ ﻋﻥ ﺍﻟﺭﻳﺎﺡ ﺑﺎﻟﻧﺳﺑﺔ ﻟﻸﺭﺍﺿﻲ ﺍﻟﺭﻣﻠﻳﺔ‪.‬ﻓﺑﺎﻹﺿﺎﻓﺔ ﺍﻟﻰ ﻋﺩﻡ ﻣﻘﺩﺭﺗﻬﺎ ﻋﻠﻰ‬ ‫ﺍﻻﺣﺗﻔﺎﻅ ﺑﺎﻟﺭﻁﻭﺑﺔ‪ ،‬ﻓﺈﻥ ﻗﺎﺑﻠﻳﺗﻬﺎ ﻟﻠﺑﺧﺭ ﺗﺯﺩﺍﺩ ﺇﺫﺍ ﻛﺎﻧﺕ ﺍﻟﻁﺑﻘﺔ ﺍﻟﺳﻁﺣﻳﺔ ﻳﻣﻳﻝ ﻗﻭﺍﻣﻬﺎ ﺍﻟﻣﺗﻭﺳﻁ ﺍﻟﻰ ﺍﻟﻧﺎﻋﻡ‪.‬‬ ‫ﻭﺇﺟﺭﺍء ﻋﻣﻠﻳﺔ ﺣﺭﺙ ﻟﻸﺭﺍﺿﻲ ﺍﻟﺭﻣﻠﻳﺔ ﺍﻟﻠﻭﻣﻳﺔ ﻭﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻟﺑﻧﺎء ﺍﻟﻣﻣﺎﺛﻝ ﺑﻌﺩ ﺍﻟﺭﻱ ﻳﻘﻠﻝ ﺃﺛﺭ ﺍﻟﺑﺧﺭ‬ ‫ﻭﻋﻣﻭﻣﺎ ﻳﻭﺻﻰ ﺑﺎﻟﻣﺣﺎﻓﻅﺔ ﻋﻠﻰ ﺍﻷﺭﺽ ﺍﻟﺭﻣﻠﻳﺔ ﺭﻁﺑﺔ ﻟﺣﻣﺎﻳﺗﻬﺎ ﻣﻥ ﺍﻟﺑﺧﺭ‪.‬‬ ‫‪ ٥-١-١‬ﺇﻧﺑﺎﺕ ﺍﻟﺑﺫﻭﺭ‪:Seeds germination‬‬ ‫ﻳﻣﻛﻥ ﻣﻥ ﺧﻼﻝ ﻋﻣﻠﻳﺔ ﺍﻟﺭﺵ ﺍﻟﺗﺣﻛﻡ ﻓﻲ ﺩﺭﺟﺔ ﺣﺭﺍﺭﺓ ﻭﻣﺣﺗﻭﻯ ﻣﺭﻗﺩ ﺍﻟﺑﺫﺭﺓ ﻣﻥ ﺍﻷﻣﻼﺡ‪.‬ﻋﻧﺩﻣﺎ ﺗﻛﻭﻥ‬ ‫ﺩﺭﺟﺔ ﺣﺭﺍﺭﺓ ﺍﻟﺗﺭﺑﺔ ﻋﺎﻟﻳﺔ ﻧﺗﻳﺟﺔ ﺯﻳﺎﺩﺓ ﺍﻹﺷﻌﺎﻉ ﺍﻟﺷﻣﺳﻲ‪ ،‬ﻳﺗﻡ ﺗﺧﻔﻳﺽ ﺩﺭﺟﺔ ﺣﺭﺍﺭﺓ ﺍﻟﻬﻭﺍء ﻣﻥ ﺧﻼﻝ ﺍﻟﺭﺵ‬ ‫ﻓﻳﻣﻧﻊ ﺍﺣﺗﺭﺍﻕ ﺍﻟﺑﺫﻭﺭ‪.‬ﻭﻋﻧﺩ ﺗﺭﺍﻛﻡ ﺍﻷﻣﻼﺡ ﻋﻠﻰ ﺳﻁﺢ ﺍﻟﺗﺭﺑﺔ ﻓﺈﻥ ﺍﺳﺗﺧﺩﺍﻡ ﺍﻟﺭﺵ ﺃﺛﻧﺎء ﻓﺗﺭﺓ ﺍﻹﻧﺑﺎﺕ ﻳﻘﻭﻡ‬ ‫ﺑﻐﺳﻳﻝ ﻫﺫﻩ ﺍﻷﻣﻼﺡ‪.‬‬ ‫‪ ٦ –١-١‬ﺇﺿﺎﻓﺔ ﺍﻟﻣﻭﺍﺩ ﺍﻟﻛﻳﻣﺎﻭﻳﺔ‪:Chemicals’ application‬‬ ‫ﻣﻥ ﺃﻫﻡ ﺍﻟﻣﻭﺍﺩ ﺍﻟﻛﻳﻣﺎﻭﻳﺔ ﺍﻟﺗﻲ ﻳﺗﻡ ﺍﺿﺎﻓﺗﻬﺎ ﻣﻊ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﺍﻟﻣﺧﺻﺑﺎﺕ‪ ،‬ﺍﻟﻣﺑﻳﺩﺍﺕ‪ ،‬ﻣﺑﻳﺩﺍﺕ ﺍﻟﺣﺷﺎﺋﺵ‪،‬‬ ‫ﻭﻣﺿﺎﺩﺍﺕ ﺍﻟﻔﻁﺭﻳﺎﺕ‪.‬ﻭﺗﺗﻭﻓﺭ ﻣﻣﻳﺯﺍﺕ َﻹﺿﺎﻓﺔ ﻫﺫﻩ ﺍﻟﻣﻭﺍﺩ ﻣﻊ ﻣﺎء ﺍﻟﺭﻱ ﻓﻲ ﺗﻭﻓﻳﺭ ﺍﻷﺩﻭﺍﺕ ﻭﺍﻟﻌﻣﺎﻟﺔ‪ ،‬ﻭﺿﺑﻁ‬ ‫ﻣﻌﺩﻻﺕ ﺍﻹﺿﺎﻓﺔ ﺍﻟﺧﺎﺻﺔ ﺑﺗﻠﻙ ﺍﻟﻣﻭﺍﺩ ﻣﻥ ﻧﺎﺣﻳﺔ ﺍﺧﺗﻳﺎﺭ ﺍﻟﺗﻭﻗﻳﺕ ﺍﻷﻓﺿﻝ ﻭﺍﻷﺳﻬﻝ‪ ،‬ﻟﺗﺣﺳﻳﻥ ﻧﻣﻭ ﺍﻟﻣﺣﺎﺻﻳﻝ‪.‬‬ ‫ﻭﺗﺳﺗﺧﺩﻡ ﻫﺫﻩ ﺍﻟﺧﺎﺻﻳﺔ ﻓﻘﻁ ﻣﻊ ﺍﻟﻧﻅﻡ ﺍﻟﺗﻲ ﺗﻘﻭﻡ ﺑﺗﻭﺯﻳﻊ ﺍﻟﻣﺎء ﺑﺎﻧﺗﻅﺎﻡ ﻭﺩﺍﺧﻝ ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ ﻣﺑﺎﺷﺭﺓ‪.‬‬ ‫‪ ٧ –١-١‬ﻏﺳﻳﻝ ﺍﻟﻣﺧﻠﻔﺎﺕ ﺍﻟﺳﺎﺋﻠﺔ‪Leaching of liquid wastes:‬‬ ‫ﻓﻲ ﺣﺎﻟﺔ ﺍﺧﺗﻼﻁ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﺑﻣﺧﻠﻔﺎﺕ ﺍﻟﻣﺩﻥ ﻭﺍﻟﺭﻱ ﻭﺍﻟﻣﺯﺍﺭﻉ ﺗﺗﺣﻭﻝ ﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﻰ ﻭﺳﻳﻠﺔ ﻹﺿﺎﻓﺔ ﻫﺫﻩ‬ ‫ﺍﻟﻣﺧﻠﻔﺎﺕ ﺍﻟﻰ ﺍﻟﺗﺭﺑﺔ ﺑﻣﺎ ﻗﺩ ﺗﺣﺗﻭﻳﻪ ﻣﻥ ﻣﻭﺍﺩ ﻏﻳﺭ ﻗﺎﺑﻠﺔ ﻟﻼﻣﺗﺻﺎﺹ ﺃﻭ ﺍﻟﺗﺣﻠﻝ ﻣﻊ ﺍﻧﺗﺷﺎﺭﻫﺎ ﻓﻭﻕ ﺳﻁﺢ‬ ‫ﺍﻷﺭﺽ ﺣﻳﺙ ﺗﻘﻭﻡ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﺑﻐﺳﻠﻬﺎ ﺍﻟﻰ ﺃﺳﻔﻝ ﻟﺗﺗﺳﺭﺏ ﺩﺍﺧﻝ ﻗﻁﺎﻉ ﺍﻟﺗﺭﺑﺔ‪.‬ﻭﻣﻌﺎﻣﻠﺔ ﻣﺎء ﺍﻟﺭﻱ ﺿﺭﻭﺭﺓ‬ ‫ﻓﻲ ﺣﺎﻟﺔ ﺍﺣﺗﻭﺍﺋﻪ ﻋﻠﻰ ﻣﻭﺍﺩ ﺿﺎﺭﺓ ﺑﺎﻟﻧﺑﺎﺗﺎﺕ ﺃﻭ ﻓﻁﺭﻳﺎﺕ ﺃﻭ ﺑﻛﺗﺭﻳﺎ ﻟﺗﺟﻧﺏ ﺗﺳﺑﺑﻬﺎ ﻓﻲ ﺯﻳﺎﺩﺓ ﺗﺭﻛﻳﺯ ﺍﻟﻌﻧﺎﺻﺭ‬ ‫ﺍﻟﺛﻘﻳﻠﺔ ﺃﻭ ﺍﻟﻣﺳﺑﺑﺎﺕ ﺍﻟﻣﺭﺿﻳﺔ ﻓﻲ ﺍﻟﺗﺭﺑﺔ ﻣﻊ ﻗﻳﺎﻣﻬﺎ ﺑﺩﻭﺭﻫﺎ ﺍﻷﺻﻳﻝ ﻓﻲ ﻏﺳﻳﻝ ﺗﻠﻙ ﺍﻟﻣﺧﻠﻔﺎﺕ ﻭﺗﻘﻠﻳﻝ ﺗﺭﻛﻳﺯﻫﺎ‬ ‫ﻓﻲ ﻗﻁﺎﻉ ﺍﻟﺗﺭﺑﺔ‪.‬‬ ‫‪ ٢ -١‬ﺃﻧﻭﺍﻉ ﻧﻅﻡ ﺍﻟﺭﻯ‪Types of farm irrigation systems :‬‬ ‫ﻛﻣﺎ ﻋﺭﺽ ﺳﺎﺑﻘﺎ ً ﻓﺎﻥ ﺍﻟﻭﻅﺎﺋﻑ ﺍﻷﺳﺎﺳﻳﺔ ﻟﻧﻅﻡ ﺍﻟﺭﻱ ﺗﺷﻣﻝ ﻋﻣﻠﻳﺎﺕ ﺭﻓﻊ ﻭﺗﻭﺻﻳﻝ ﻭﺇﺿﺎﻓﺔ ﻣﺎء ﺍﻟﺭﻱ‬ ‫ﻟﻠﺣﻘﻝ‪.‬ﺍﻟﺟﺯء ﺍﻟﺗﺎﻟﻲ ﻳﻧﺎﻗﺵ ﺍﻷﻧﻭﺍﻉ ﺍﻟﻣﺧﺗﻠﻔﺔ ﻟﻬﺫﻩ ﺍﻟﻌﻣﻠﻳﺎﺕ ﻭﺗﻭﺯﻳﻊ ﺍﻟﻣﺎء‪.‬‬ ‫‪ ١ -٢ -١‬ﻁﺭﻕ ﺍﻟﺭﻓﻊ‪: Water lifting methods‬‬ ‫ﻫﻧﺎﻙ ﻁﺭﻳﻘﺗﺎﻥ ﺭﺋﻳﺳﻳﺗﺎﻥ ﻟﺭﻓﻊ ﺍﻟﻣﺎء ﻭﻫﻣﺎ ﻁﺭﻳﻘﺔ ﺍﻟﺟﺎﺫﺑﻳﺔ ﺃﻭ ﻋﻥ ﻁﺭﻳﻖ ﺍﻟﺿﺦ ﻋﻧﺩﻣﺎ ﻳﻛﻭﻥ ﺍﻟﻔﺭﻕ ﻓﻲ‬ ‫ﺍﻻﺭﺗﻔﺎﻉ ﺑﻳﻥ ﻣﺻﺩﺭ ﺍﻟﻣﺎء ﻭﺍﻟﺣﻘﻝ ﺑﺳﻳﻁ ﺑﺣﻳﺙ ﻻ ﻳﺗﻌﺩﻯ ﺃﻣﺗﺎﺭ ﺑﺳﻳﻁﺔ ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧﺩﻡ ﻁﺭﻳﻘﺔ ﺍﻟﺟﺎﺫﺑﻳﺔ ﻓﻳﻣﺎ‬ ‫ﻋﺩﺍ ﺫﻟﻙ ﻓﺈﻧﻧﺎ ﻧﺳﺗﺧﺩﻡ ﺃﺟﻬﺯﺓ ﻭﻣﻌﺩﺍﺕ ﺍﻟﺿﺦ ﺃﻭ ﻓﻳﻣﺎ ﻳﻌﺭﻑ ﺑﺎﻟﻁﻠﻣﺑﺎﺕ‪.‬‬ ‫‪) ١ – ٢-١‬ﺃ ( ﺍﻟﺭﻓﻊ ﺑﺎﻟﺟﺎﺫﺑﻳﺔ ‪: Gravity‬‬ ‫ﺃﻛﺛﺭ ﺃﻧﻭﺍﻉ ﺍﻟﺭﻓﻊ ﺑﺎﻟﺟﺎﺫﺑﻳﺔ ﺷﻳﻭﻋﺎ ﻫﻭ ﺍﺳﺗﺧﺩﺍﻡ ﺍﻟﺣﻠﺯﻭﻥ ﺍﻟﺫﻱ ﻳﺳﺗﺧﺩﻡ ﻟﺗﻭﺻﻳﻝ ﺍﻟﻣﺎء ﻣﻥ ﺍﻟﻘﻧﺎﺓ ﺍﻟﻣﻔﺗﻭﺣﺔ‬ ‫ﻟﻠﺣﻘﻝ ﺃﻭ ﻟﺧﻁ ﺃﻧﺎﺑﻳﺏ )ﺷﻛﻝ ‪ (١-٢‬ﻭﻫﺫﻩ ﺍﻟﺣﻠﺯﻭﻧﺎﺕ ﺗﺗﻛﻭﻥ ﻣﻥ ﻓﺗﺣﺎﺕ ﺩﺧﻭﻝ ﻭﻭﺳﻳﻠﺔ ﺗﻭﺻﻳﻝ ﻭﻓﺗﺣﺔ ﺧﺭﻭﺝ‬ ‫ﺣﺳﺏ ﺍﻟﺣﺎﺟﺔ‪.‬ﺍﻟﺣﻠﺯﻭﻧﺎﺕ ﺗﺣﺗﻭﻱ ﻋﻠﻰ ﺃﺩﻭﺍﺕ ﻟﻘﻳﺎﺱ ﺗﻧﻅﻳﻡ ﺍﻟﺳﺭﻳﺎﻥ ﺍﻟﺩﺍﺧﻝ ﻟﻠﺣﻘﻝ ﻣﺛﻝ ﺍﻟﻬﺩﺍﺭﺍﺕ ﻭﺍﻟﺑﻭﺍﺑﺎﺕ‬ ‫ﺃﻭ ﺍﻟﻣﺣﺎﺑﺱ‪.‬ﻭﻳﺗﻡ ﺍﺳﺗﺧﺩﺍﻡ ﻭﺳﻳﻠﺔ ﺿﺦ ﺃﺧﺭﻯ ﻓﻲ ﺣﺎﻟﺔ ﺇﺫﺍ ﻣﺎ ﻛﺎﻥ ﺍﻟﺿﺎﻏﻁ ﻏﻳﺭ ﻛﺎﻓﻲ ﻟﻧﻅﺎﻡ ﺍﻟﺭﻱ‪.‬‬ ‫ﺷﻛﻝ ‪ :١-١‬ﺍﻟﺭﻓﻊ ﺑﺎﻟﺟﺎﺫﺑﻳﺔ‬ ‫‪ ) ١ – ٢ -١‬ﺏ ( ﻣﻌﺩﺍﺕ ﺍﻟﺿﺦ ‪:Pumping plants‬‬ ‫ﻭﻳﺗﻡ ﺍﺳﺗﺧﺩﺍﻣﻬﺎ ﻓﻲ ﺣﺎﻟﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺿﺎﻏﻁ ﺍﻟﺗﻭﺻﻳﻝ ﻏﻳﺭ ﻛﺎﻓﻲ ﻟﺗﺷﻐﻳﻝ ﻧﻅﺎﻡ ﺍﻟﺭﻱ‪.‬ﻭﻓﻰ ﻫﺫﻩ ﺍﻟﺣﺎﻟﺔ‬ ‫ﻳﺗﻡ ﺍﺳﺗﺧﺩﺍﻡ ﻁﻠﻣﺑﺔ ﻁﺭﺩ ﻣﺭﻛﺯﻱ ﺃﻓﻘﻳﺔ ﺃﻭ ﺭﺍﺳﻳﺔ ﺗﺩﺍﺭ ﺑﺎﺳﺗﺧﺩﺍﻡ ﻣﺣﺭﻛﺎﺕ ﻛﻬﺭﺑﺎﺋﻳﺔ ﺃﻭ ﻣﺣﺭﻛﺎﺕ ﺍﺣﺗﺭﺍﻕ‬ ‫ﺩﺍﺧﻠﻲ‪.‬ﻭﺗﺣﺗﺎﺝ ﻭﺣﺩﺓ ﺍﻟﺿﺦ ﺍﻟﻰ ﻣﺻﺩﺭ ﻟﻠﻘﺩﺭﺓ ﻹﻣﺩﺍﺩﻫﺎ ﺑﺎﻟﺣﺭﻛﺔ ﺍﻟﻣﻁﻠﻭﺑﺔ ﻭﻫﺫﺍ ﺍﻟﻣﺻﺩﺭ ﻗﺩ ﻳﻛﻭﻥ ﺧﺎﺭﺟﻲ‬ ‫ﻛﻣﺣﺭﻙ ﻛﻬﺭﺑﻲ ﺃﻭ ﺩﻳﺯﻝ ﺃﻭ ﺟﺭﺍﺭ ﺯﺭﺍﻋﻲ ﻋﻠﻰ ﺳﺑﻳﻝ ﺍﻟﻣﺛﺎﻝ‪ ،‬ﺃﻭ ﺩﺍﺧﻠﻲ ﻣﺩﻣﺞ ﻣﻊ ﺍﻟﻣﺿﺧﺔ‪.‬‬ ‫‪ ٢-٢-١‬ﻁﺭﻕ ﺍﻟﺗﻭﺻﻳﻝ ‪:Conveyance methods‬‬ ‫ﻳﺗﻡ ﺗﻭﺻﻝ ﺍﻟﻣﺎء ﻣﻥ ﻣﺻﺩﺭﻩ ﻟﻠﻣﻧﺎﻁﻖ ﺍﻟﻣﺯﺭﻭﻋﺔ ﻓﻲ ﺷﺑﻛﺎﺕ ﻟﻘﻧﻭﺍﺕ ﺃﻭ ﺧﻁﻭﻁ ﻣﻭﺍﺳﻳﺭ‪.‬ﺍﻟﻘﻧﻭﺍﺕ‬ ‫ﺍﻟﻣﻔﺗﻭﺣﺔ ﻗﺩ ﺗﻛﻭﻥ ﻣﻐﻠﻘﺔ ﺃﻭ ﻏﻳﺭ ﻣﻐﻠﻘﺔ ﻭﺧﻁﻭﻁ ﺍﻟﻣﻭﺍﺳﻳﺭ ﻗﺩ ﺗﻛﻭﻥ ﻣﻔﺗﻭﺣﺔ ﺟﺯﺋﻳﺎ ﻟﻠﻬﻭﺍء ﺃﻭ ﻣﻐﻠﻘﺔ‪.‬‬ ‫) ‪ (١-٢-٢-١‬ﺍﻟﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ ‪:Open channels‬‬ ‫ﺍﻟﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ ﻋﺎﺩﺓ ﻣﺎ ﻳﺻﺎﺣﺑﻬﺎ ﻣﻳﻝ ﻓﻲ ﺍﺗﺟﺎﻩ ﺍﻟﺳﺭﻳﺎﻥ ﻭﻗﺩ ﺗﻛﻭﻥ ﻣﻐﻠﻘﺔ ﺃﻭ ﻏﻳﺭ ﻣﻐﻠﻘﺔ‪.‬ﻭﻳﺗﻡ‬ ‫ﺍﺳﺗﺧﺩﺍﻣﻬﻣﺎ ﻣﻊ ﻣﺻﺎﺩﺭ ﺍﻟﻣﺎء ﺍﻟﺳﻁﺣﻳﺔ ﺃﻭ ﺍﻟﺟﻭﻓﻳﺔ‪.‬ﻭﻳﺗﻡ ﺗﻐﻠﻳﻑ ﺍﻟﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ ﺇﻣﺎ ﺑﺎﻷﺳﻣﻧﺕ ﺃﻭ ﺍﻻﺳﻔﻠﺕ‬ ‫ﻟﺗﻘﻠﻳﻝ ﺣﺟﻡ ﺍﻟﻘﻧﺎﺓ ﻭﺗﻘﻠﻳﻝ ﺍﻟﺗﻠﻑ ﻣﻣﺎ ﻳﻘﻠﻝ ﺗﻛﺎﻟﻳﻑ ﺻﻳﺎﻧﺗﻬﺎ‪.‬ﺍﻟﻘﻧﻭﺍﺕ ﻏﻳﺭ ﺍﻟﻣﻐﻠﻘﺔ ﺗﺳﺗﺧﺩﻡ ﺑﺳﺑﺏ ﺭﺧﺹ ﺍﻟﺗﻛﻠﻔﺔ‬ ‫ﻭﻛﺫﻟﻙ ﻟﺳﻬﻭﻟﺔ ﺍﻻﺳﺗﻐﻧﺎء ﻋﻧﻬﺎ ﺃﻭ ﺗﻐﻳﻳﺭ ﻣﻭﻗﻌﻬﺎ‪.‬‬ ‫) ‪ (٢-٢-٢-١‬ﺧﻁﻭﻁ ﺍﻷﻧﺎﺑﻳﺏ ‪:Pipe lines‬‬ ‫ﻳﺗﻡ ﺗﺻﻧﻳﻑ ﻫﺫﻩ ﺍﻟﺧﻁﻭﻁ ﻛﺧﻁﻭﻁ ﻣﻔﺗﻭﺣﺔ ﺃﻭ ﻣﻐﻠﻘﺔ‪.‬ﻭﻛﻼ ﺍﻟﻧﻭﻋﻳﺗﺎﻥ ﻣﻣﻛﻥ ﺍﻥ ﻳﺗﻭﺍﺟﺩ ﻋﻠﻰ ﺍﻟﺳﻁﺢ ﺃﻭ‬ ‫ﺗﺩﻓﻥ ﺗﺣﺕ ﺍﻟﺳﻁﺢ‪.‬ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﺳﻁﺣﻳﺔ ﻟﻬﺎ ﻣﻳﺯﺓ ﺳﻬﻭﻟﺔ ﺍﻟﺗﺣﺭﻳﻙ ﺃﻣﺎ ﺍﻟﻣﺩﻓﻭﻧﺔ ﻓﻳﻣﻛﻥ ﺍﺳﺗﺧﺩﺍﻣﻬﺎ ﺑﺄﻣﺎﻥ ﻣﻊ‬ ‫ﺍﻟﻌﻣﻠﻳﺎﺕ ﺍﻟﺯﺭﺍﻋﻳﺔ ﻛﺎﻟﺣﺭﺙ ﻭﻋﺩﻡ ﺍﻟﺧﻭﻑ ﻋﻠﻳﻬﺎ ﻣﻥ ﺃﺩﻭﺍﺕ ﺍﻟﺯﺭﺍﻋﺔ‪.‬ﻭﺧﻁﻭﻁ ﺍﻷﻧﺎﺑﻳﺏ ﻟﻬﺎ ﺍﻟﻌﺩﻳﺩ ﻣﻥ‬ ‫ﺍﻟﻣﻣﻳﺯﺍﺕ ﻋﻥ ﺍﻟﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ ﻓﺧﻁﻭﻁ ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﺟﻳﺩﺓ ﺗﻣﻧﻊ ﺍﻟﺗﺳﺭﺏ ﻭﻓﻭﺍﻗﺩ ﺍﻟﺗﺑﺧﺭ ﻭﺗﺟﻧﺏ ﻣﺷﺎﻛﻝ ﺍﻧﺗﺷﺎﺭ‬ ‫ﺍﻟﺣﺷﺎﺋﺵ ﻛﻣﺎ ﺃﻧﻬﺎ ﺃﻛﺛﺭ ﺃﻣﻧﺎ ﻟﻌﺩﻡ ﺍﺣﺗﻣﺎﻝ ﺳﻘﻭﻁ ﺃﻯ ﻛﺎﺋﻥ ﺃﻭ ﺃﺩﻭﺍﺕ ﻓﻲ ﺍﻟﻣﺎء ﻛﻣﺎ ﺍﻧﻪ ﻳﻣﻛﻥ ﺗﺭﻛﻳﺑﻬﺎ ﻋﻠﻰ‬ ‫ﺍﻷﺳﻁﺢ ﻏﻳﺭ ﺍﻟﻣﻧﺗﻅﻣﺔ ﺍﻟﻣﻳﻭﻝ‪.‬ﻭﺍﺳﺗﺧﺩﺍﻡ ﺍﻟﻣﻭﺍﺳﻳﺭ ﺍﻟﻣﻐﻁﺎﺓ ﻳﻌﺎﻟﺞ ﻋﻳﻭﺏ ﺍﻟﺗﺭﻛﻳﺏ ﺍﻟﺳﺊ ﻟﻠﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ‬ ‫ﻭﻳﺗﻳﺢ ﺍﺳﺗﺧﺩﺍﻡ ﻣﺳﺎﺭﺍﺕ ﻣﺳﺗﻘﻳﻣﺔ ﻟﻠﻣﺎء ﻣﻥ ﺍﻟﻣﺻﺩﺭ ﻟﻠﺣﻘﻝ ﻛﻣﺎ ﺍﻧﻪ ﻳﻘﻠﻝ ﺍﻟﻔﻘﺩ ﻓﻲ ﻣﺳﺎﺣﺔ ﺍﻷﺭﺽ ﺍﻟﺗﻲ ﻳﻣﻛﻥ‬ ‫ﺍﺳﺗﻐﻼﻟﻬﺎ ﺇﻧﺗﺎﺟﻳﺎ‪.‬ﻣﻊ ﺫﻟﻙ ﻳﻣﻛﻥ ﺃﻥ ﺗﻛﻭﻥ ﺍﻟﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ ﺃﻛﺛﺭ ﺍﻗﺗﺻﺎﺩﻳﺔ ﻣﻥ ﺧﻁﻭﻁ ﺍﻷﻧﺎﺑﻳﺏ ﻋﻧﺩﻣﺎ ﺗﻛﻭﻥ‬ ‫ﺍﻷﺭﺽ ﻣﺳﻁﺣﺔ ﻭﻣﻌﺩﻝ ﺍﻟﺳﺭﻳﺎﻥ ﻛﺑﻳﺭ‪.‬‬ ‫‪ ‬ﺧﻁﻭﻁ ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﻣﻔﺗﻭﺣﺔ )ﺿﻐﻁ ﻣﻧﺧﻔﺽ(‬ ‫ﻷﻥ ﻫﺫﻩ ﺍﻟﺧﻁﻭﻁ ﻣﻔﺗﻭﺣﺔ ﻟﻠﻬﻭﺍء ﻓﺈﻥ ﺍﻟﺿﻐﻁ ﺑﻬﺎ ﻻ ﻳﺯﻳﺩ ﻋﻥ‪ ٦‬ﻡ ﻭﻳﻣﻛﻥ ﺗﻭﺿﻳﺢ ﻗﻁﺎﻉ ﻓﻲ ﻫﺫﻩ‬ ‫ﺍﻷﻧﺎﺑﻳﺏ ﻓﻲ ﺷﻛﻝ )‪ (٢-١‬ﻭﺍﻷﻧﺑﻭﺑﺔ ﺍﻟﻘﺎﺋﻣﺔ ﺗﻭﻓﺭ ﺗﻧﻅﻳﻡ ﺍﻟﺿﺎﻏﻁ ﻭﻣﻧﻊ ﻭﺟﻭﺩ ﻓﻘﺎﻋﺎﺕ ﺃﻭ ﺣﺩﻭﺙ ﺗﻔﺭﻳﻎ‪.‬ﻭﻫﺫﺍ‬ ‫ﺍﻟﻧﻭﻉ ﻻ ﻳﺳﺗﺧﺩﻡ ﺍﻻ ﻋﻧﺩﻣﺎ ﻳﻛﻭﻥ ﺍﻟﺿﺎﻏﻁ ﺍﻟﻣﻁﻠﻭﺏ ﻻ ﻳﺯﻳﺩ ﻋﻥ ‪ ٦‬ﻡ‪.‬‬ ‫‪ ‬ﺧﻁﻭﻁ ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﻣﻐﻠﻘﺔ‪:‬‬ ‫ﻭﺗﻭﻓﺭ ﻫﺫﻩ ﺍﻟﺧﻁﻭﻁ ﺿﺎﻏﻁ ﻗﺩ ﻳﺻﻝ ﺍﻟﻰ ‪ ١٥‬ﻡ‪.‬ﻭﻫﻰ ﻟﻳﺳﺕ ﻣﻔﺗﻭﺣﺔ ﻟﻠﻬﻭﺍء ﺍﻟﺟﻭﻯ ﻭ ﻻ ﻳﻭﺟﺩ ﺑﻬﺎ‬ ‫ﺗﺭﻛﻳﺑﺎﺕ ﺇﺿﺎﻓﻳﺔ ﻛﺎﻟﻣﻭﺟﻭﺩﺓ ﻓﻲ ﺍﻟﺧﻁﻭﻁ ﺍﻟﻣﻔﺗﻭﺣﺔ ﻣﺛﻝ ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﻘﺎﺋﻣﺔ ﻭﻳﺗﻡ ﺍﺳﺗﺧﺩﺍﻡ ﺻﻣﺎﻣﺎﺕ ﻭﻣﻭﺍﻧﻊ‬ ‫ﺗﻔﺭﻳﻎ ﻭﻣﺛﺑﺗﺎﺕ ﻟﻠﻣﺿﺧﺔ ﺑﺩﻻ ﻣﻧﻬﺎ ﻟﺩﻋﻡ ﺍﻟﺳﺭﻳﺎﻥ ﻭﺍﻟﺗﺣﻛﻡ ﻓﻲ ﺍﻟﺿﻐﻁ ﻛﻣﺎ ﺃﻧﻬﺎ ﺗﺣﻣﻰ ﺧﻁ ﺍﻷﻧﺎﺑﻳﺏ‪.‬‬ ‫ﺷﻛﻝ )‪ :(٢-١‬ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﻣﻐﻠﻘﺔ )ﺃ‪ -‬ﺍﻟﻣﻔﺗﻭﺡ )ﺏ‪ -‬ﺍﻟﻣﻐﻠﻖ‬ ‫‪٣-٢-١‬ﻧﻅﻡ ﺍﻹﺿﺎﻓﺔ ‪:Application systems‬‬ ‫ﺗﻌﺗﺑﺭ ﺗﻘﻧﻳﺎﺕ ﺍﻟﺭﺵ– ﺍﻟﺭﻱ ﺍﻟﻣﻭﺿﻌﻲ– ﺍﻟﺳﻁﺣﻲ )ﺍﻟﺟﺎﺫﺑﻳﺔ( ﻫﻰ ﺍﻟﺗﻘﻧﻳﺎﺕ ﺍﻟﻣﺳﺗﺧﺩﻣﺔ ﻓﻲ ﻧﻅﻡ ﺇﺿﺎﻓﺔ‬ ‫ﺍﻟﻣﻳﺎﻩ ﺍﻟﺗﻲ ﺗﺳﺗﺧﺩﻡ ﻟﺗﻭﺯﻳﻊ ﺍﻟﻣﻳﺎﻩ ﻟﻠﻣﺣﺎﺻﻳﻝ‪.‬ﻭﺳﻭﻑ ﻧﻧﺎﻗﺵ ﻓﻲ ﻫﺫﺍ ﺍﻟﺟﺯء ﻫﺫﻩ ﺍﻟﻧﻅﻡ ﻭﺍﻟﻅﺭﻭﻑ ﺍﻟﻣﺛﻠﻰ‬ ‫ﻟﺗﺷﻐﻳﻠﻬﺎ‪.‬‬ ‫) ‪ ( ١-٣-٢-١‬ﻧﻅﺎﻡ ﺍﻟﺭﻯ ﺑﺎﻟﺭﺵ ‪:Sprinkler irrigation system‬‬ ‫ﻣﻛﻭﻧﺎﺕ ﻧﻅﺎﻡ ﺍﻟﺭﻱ ﺑﺎﻟﺭﺵ ﻣﻭﺿﺣﺔ ﺑﺎﻟﺷﻛﻝ )‪ (٣-١‬ﻭﻳﺳﺗﺧﺩﻡ ﻫﺫﺍ ﺍﻟﻧﻅﺎﻡ ﺭﺷﺎﺷﺎﺕ ﺗﻌﻣﻝ ﻋﻠﻰ ﺿﻐﻁ‬ ‫ﻳﺗﺭﺍﻭﺡ ﻣﻥ ‪ ٧٠‬ﺇﻟﻰ ﻣﺎ ﻳﺯﻳﺩ ﻋﻥ ‪ ٧٠٠‬ﻙ ﺑﺎﺳﻛﺎﻝ ﻟﺗﻛﻭﻥ ﻭﺗﻭﺯﻉ ﻧﻘﺎﻁ ﺗﺣﺎﻛﻲ ﻗﻁﺭﺍﺕ ﺍﻟﻣﻁﺭ ﻓﻭﻕ ﺳﻁﺢ‬ ‫ﺍﻷﺭﺽ‪.‬‬ ‫ﺷﻛﻝ )‪ (٣-١‬ﺗﺭﻛﻳﺏ ﺷﺑﻛﺔ ﺍﻟﺭﻯ ﺑﺎﻟﺭﺵ‬ ‫ﻭﻫﺫﺍ ﺍﻟﻧﻅﺎﻡ ﻳﺿﻳﻑ ﺍﻟﻣﺎء ﺑﻛﻔﺎءﺓ ﻭﻟﻛﻥ ﻳﻌﻳﺑﻪ ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻻﺑﺗﺩﺍﺋﻳﺔ ﺍﻟﻌﺎﻟﻳﺔ ﻭﺍﺳﺗﺧﺩﺍﻡ ﻁﺎﻗﺔ ﺃﻛﺑﺭ ﻣﻥ ﺍﻟﻧﻅﻡ‬ ‫‪‬‬ ‫ﺍﻷﺧﺭﻯ ﺍﻻ ﺃﻥ ﻣﺗﻁﻠﺑﺎﺕ ﺍﻟﻌﻣﺎﻟﺔ ﻣﻧﺧﻔﺿﺔ‪.‬‬ ‫ﻧﻅﻡ ﺍﻟﺭﺵ ﻣﻧﺎﺳﺑﺔ ﻟﻛﺛﺭﺓ ﺃﻧﻭﺍﻉ ﺍﻟﺗﺭﺑﺔ ﻭﺍﻟﻅﺭﻭﻑ ﻭﻳﻣﻛﻥ ﺍﺳﺗﺧﺩﺍﻣﻬﺎ ﺑﻧﺟﺎﺡ ﻟﻠﺭﻯ ﻓﻲ ﺍﻟﻅﺭﻭﻑ ﺍﻟﺗﺎﻟﻳﺔ‪-:‬‬ ‫ﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻟﻧﻔﺎﺫﻳﺔ ﺍﻟﻌﺎﻟﻳﺔ ﻭﺍﻟﺗﻲ ﻳﺻﻌﺏ ﻣﻌﻬﺎ ﺍﺳﺗﺧﺩﺍﻡ ﻧﻅﻡ ﺃﺧﺭﻯ‪.‬‬ ‫‪‬‬ ‫ﺍﻷﺭﺍﺿﻲ ﺍﻟﻐﺩﻗﺔ ﻏﻳﺭ ﺍﻟﻣﺳﺗﻭﻳﺔ‪.‬‬ ‫‪‬‬ ‫ﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻻﻧﺣﺩﺍﺭ ﺍﻟﺷﺩﻳﺩ ﻭﺍﻟﻘﺎﺑﻠﺔ ﻟﻠﻧﺣﺭ)ﺷﻛﻝ‪ (٤-١‬ﻭﻫﺫﻩ ﺣﺎﻟﺔ ﻻ ﺑﺩﻳﻝ ﻋﻥ ﻧﻅﺎﻡ ﺍﻟﺭﻱ‬ ‫‪‬‬ ‫ﺑﺎﻟﺭﺵ ﻓﻳﻬﺎ‪.‬‬ ‫ﺍﻷﺭﺍﺿﻲ ﻏﻳﺭ ﺍﻟﻣﺳﺗﻭﻳﺔ ﺍﻟﺗﻲ ﻳﺻﻌﺏ ﺗﺳﻭﻳﺗﻬﺎ ﺩﻭﻥ ﺗﻛﻠﻔﺔ ﻋﺎﻟﻳﺔ‪.‬‬ ‫‪‬‬ ‫ﺷﻛﻝ )‪ :(٤-١‬ﺍﺳﺗﺧﺩﺍﻡ ﺍﻟﺭﻯ ﺑﺎﻟﺭﺵ ﻓﻲ ﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻟﻣﻳﻝ ﺍﻟﺷﺩﻳﺩ‬ ‫ﻭﻳﻣﻛﻥ ﺍﺳﺗﺧﺩﺍﻡ ﻫﺫﺍ ﺍﻟﻧﻅﺎﻡ ﻟﻠﺣﻣﺎﻳﺔ ﻣﻥ ﺍﻟﺻﻘﻳﻊ‪ ،‬ﺇﺿﺎﻓﺔ ﺍﻷﺳﻣﺩﺓ ﻭﺍﻟﻣﺧﺻﺑﺎﺕ‪ ،‬ﺍﻟﺗﺣﻛﻡ ﻓﻲ ﺍﻟﻧﺣﺭ‪،‬‬ ‫ﺗﺭﻁﻳﺏ ﺍﻟﻣﺣﺻﻭﻝ ﻭﺍﻟﺗﺭﺑﺔ‪ ،‬ﺗﺄﺧﻳﺭ ﺍﻹﺛﻣﺎﺭ ﻭﻧﻣﻭ ﺍﻟﺑﺭﺍﻋﻡ‪.‬ﺇﻧﺑﺎﺕ ﺍﻟﺑﺫﻭﺭ ﻭﻏﺳﻳﻝ ﺍﻟﺗﺭﺑﺔ‪.‬‬ ‫)‪ (٢-٣-٢-١‬ﺍﻟﺭﻯ ﺍﻟﻣﻭﺿﻌﻲ ‪:Trickle irrigation system‬‬ ‫ﻭﻫﻭ ﻋﺑﺎﺭﺓ ﻋﻥ ﺍﻟﺭﻱ ﺍﻟﻣﺗﻘﻁﻊ ﺑﻣﻌﺩﻻﺕ ﺑﺳﻳﻁﺔ ﻣﺑﺎﺷﺭﺓ ﻋﻠﻰ ﺳﻁﺢ ﺍﻟﺗﺭﺑﺔ ﺃﻭ ﺩﺍﺧﻝ ﻣﺟﺎﻻﺕ ﺍﻟﺑﺫﻭﺭ‬ ‫‪‬‬ ‫ﻟﻠﻧﺑﺎﺗﺎﺕ‪.‬ﻫﺫﻩ ﺍﻟﺗﻘﻧﻳﺔ ﺗﻌﺗﻣﺩ ﻋﻠﻰ ﺍﻣﺩﺍﺩ ﺍﻟﻧﺑﺎﺕ ﺑﺎﺣﺗﻳﺎﺟﺎﺗﻪ ﺩﺍﺧﻝ ﺍﻟﻣﺟﻣﻭﻉ ﺍﻟﺟﺫﺭﻱ ﻣﺑﺎﺷﺭﺓ ﻭﺿﺑﻁ‬ ‫ﻣﺳﺗﻭﻯ ﺍﻟﺭﻁﻭﺑﺔ ﻭﺍﻟﻣﺣﺎﻓﻅﺔ ﻋﻠﻳﻪ ﺑﺣﻳﺙ ﻳﻅﻝ ﻣﻘﺎﺭﺑﺎ ً ﻟﻠﻣﺳﺗﻭﻯ ﺍﻟﻣﺛﺎﻟﻲ ﺩﺍﺧﻝ ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ‪.‬‬ ‫ﺍﻟﺭﻱ ﺍﻟﻣﻭﺿﻌﻲ ﻳﺳﺗﺧﺩﻡ ﺿﻐﻁ ﻳﺗﺭﺍﻭﺡ ﻣﻥ ‪ ١٥‬ﺍﻟﻰ ‪ ٢٠٠‬ﻙ ﺑﺎﺳﻛﺎﻝ ﻹﺳﻘﺎﻁ ﺍﻟﻣﺎء ﻓﻲ ﻭﻗﺕ‬ ‫ﻣﺣﺩﺩ ﺩﺍﺧﻝ ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ ﺃﻭ ﻓﻭﻕ ﺳﻁﺢ ﺍﻟﺗﺭﺑﺔ‪.‬ﻭﺍﻷﻧﻭﺍﻉ ﺍﻟﻣﺧﺗﻠﻔﺔ ﻟﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﻣﻭﺿﻌﻲ‬ ‫ﻣﻭﺿﺣﺔ ﻓﻲ ﺷﻛﻝ )‪ (٥-١‬ﻭﻫﻰ‪:‬‬ ‫‪Microjet‬‬ ‫ﺍﻟﺭﻱ ﺍﻟﺭﺫﺍﺫﻱ‬ ‫‪‬‬ ‫‪Bubbler‬‬ ‫ﺍﻟﻔﻘﺎﻋﻲ‬ ‫‪‬‬ ‫‪Drip irrigation‬‬ ‫ﺍﻟﺗﻧﻘﻳﻁ‬ ‫‪‬‬ ‫‪Leaky pipe‬‬ ‫ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﻣﺳﺎﻣﻳﺔ‬ ‫‪‬‬ ‫ﺍﻟﻅﺭﻭﻑ ﺍﻟﺗﻰ ﻳﻔﺿﻝ ﻓﻳﻬﺎ ﺍﺳﺗﺧﺩﺍﻡ ﺍﻟﺭﻱ ﺍﻟﻣﻭﺿﻌﻲ‪- :‬‬ ‫‪.١‬ﺍﻟﺣﺎﺟﺔ ﻹﺩﺍﺭﺓ ﻣﺳﺗﻭﻯ ﺍﻟﻣﻠﻭﺣﺔ ﺩﺍﺧﻝ ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ ﺣﻳﺙ ﺃﻥ ﺑﻘﺎء ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ ﻓﻲ ﺣﺎﻟﺔ ﺭﻁﻭﺑﺔ‬ ‫ﺩﺍﺋﻣﺔ ﻳﻘﻠﻝ ﻣﻥ ﺗﺄﺛﻳﺭ ﺍﻷﻣﻼﺡ ﻋﻠﻰ ﺍﻟﻣﺟﻣﻭﻉ ﺍﻟﺟﺫﺭﻱ‪.‬‬ ‫‪.٢‬ﻣﺻﺎﺩﺭ ﺍﻟﻣﻳﺎﻩ ﺍﻟﻣﺣﺩﻭﺩﺓ ﻭﺍﻟﻣﻛﻠﻔﺔ ﻭﺍﻟﻣﺎﻟﺣﺔ‪.‬‬ ‫‪.٣‬ﺇﺿﺎﻓﺔ ﺍﻟﻣﺎء ﻳﺟﺏ ﺃﻥ ﺗﻛﻭﻥ ﻓﻲ ﻣﻭﻗﻊ ﻣﺣﺩﺩ ﻭﺑﻛﻣﻳﺎﺕ ﻟﺗﻘﻠﻳﻝ ﺍﻟﻔﻘﺩ‪.‬‬ ‫‪.٤‬ﻋﺩﻡ ﺍﻟﺭﻏﺑﺔ ﻓﻲ ﺍﺑﺗﻼﻝ ﺍﻷﺟﺯﺍء ﺍﻟﻌﻠﻭﻳﺔ ﻣﻥ ﺍﻟﻧﺑﺎﺗﺎﺕ ﻣﻣﺎ ﻳﺗﻳﺢ ﻣﻘﺎﻭﻣﺔ ﺍﻟﺑﻛﺗﺭﻳﺎ ﻭﺍﻟﻔﻁﺭﻳﺎﺕ ﻭﺃﻯ‬ ‫ﺁﻓﺎﺕ ﺃﻭ ﺃﻣﺭﺍﺽ ﺃﺧﺭﻯ‪.‬‬ ‫ﻭﻳﻌﻳﺏ ﻫﺫﺍ ﺍﻟﻧﻅﺎﻡ ﺃﻥ ﻟﻭ ﻛﺎﻥ ﻣﺎء ﺍﻟﺭﻱ ﺑﻪ ﺗﺭﻛﻳﺯﺍﺕ ﻋﺎﻟﻳﺔ ﻣﻥ ﺍﻟﻛﻳﻣﺎﻭﻳﺎﺕ ﻭﺍﻟﻣﻭﺍﺩ ﺍﻟﺣﻳﺔ ﻓﺎﻧﻬﺎ ﻳﻣﻛﻥ ﺃﻥ‬ ‫ﺗﺳﺑﺏ ﺍﻧﺳﺩﺍﺩ ﻣﻛﻭﻧﺎﺕ ﺍﻟﻧﻅﺎﻡ ﺑﺷﻛﻝ ﻳﻣﻛﻥ ﺍﻥ ﻳﺟﻌﻝ ﺗﺷﻐﻳﻝ ﺍﻟﻧﻅﺎﻡ ﺻﻌﺏ ﻭﻣﻛﻠﻑ ﺍﻻ ﺃﻥ ﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﻣﻭﺿﻌﻲ‬ ‫ﻣﻧﺎﺳﺑﺔ ﻟﻣﺧﺗﻠﻑ ﺃﻧﻭﺍﻉ ﺍﻟﺗﺭﺑﺔ ﻭﺍﻟﺗﺿﺎﺭﻳﺱ‪.‬‬ ‫ﺏ‬ ‫ﺃ‬ ‫ﺩ‬ ‫ﺝ‬ ‫)ﺏ‪ -‬ﺍﻟﺭﻯ ﺍﻟﻔﻘﺎﻋﻲ‬ ‫ﺷﻛﻝ )‪ :(٥-١‬ﺃﻧﻭﺍﻉ ﻧﻅﻡ ﺍﻟﺭﻯ ﺍﻟﻣﻭﺿﻌﻲ )ﺃ‪ -‬ﺍﻟﺭﻯ ﺍﻟﺭﺫﺍﺫﻱ‬ ‫)ﺝ‪-‬ﺍﻷﻧﺎﺑﻳﺏ ﺍﻟﻣﺳﺎﻣﻳﺔ )ﺩ‪-‬ﺍﻟﺭﻯ ﺑﺎﻟﺗﻧﻘﻳﻁ‬ ‫ﺍﻻ ﺍﻥ ﺍﺧﺗﻳﺎﺭ ﻧﻣﻁ ﺍﻟﺗﻭﺯﻳﻊ ﻭﺃﺩﺍء ﺍﻟﻣﻭﺯﻋﺎﺕ ﻭﺍﻟﺗﺻﺭﻑ ﺍﻟﻣﻁﻠﻭﺏ ﻳﺣﻛﻡ ﺍﻟﻣﻘﺎﺭﻧﺔ ﺑﻳﻥ ﺗﻠﻙ ﺍﻷﻧﻭﺍﻉ‪.‬‬ ‫) ‪ ( ٣-٣-٢-٢‬ﺍﻟﺭﻯ ﺍﻟﺳﻁﺣﻲ )ﺍﻟﺭﻯ ﺑﺎﻟﺟﺎﺫﺑﻳﺔ( ‪:Surface irrigation‬‬ ‫ﻣﺎﺯﺍﻝ ﺍﻻﻋﺗﻣﺎﺩ ﻋﻠﻰ ﺃﺳـﻠﻭﺏ ﺍﻟﺭﻱ ﺍﻟﺳـﻁﺣﻲ ﻣﻧﺗﺷـﺭﺍ ً ﻓﻲ ﺍﻟﻌﺩﻳﺩ ﻣﻥ ﺩﻭﻝ ﺍﻟﻌﺎﻟﻡ‪.‬ﻭﺗﺷـﻣﻝ ﺃﻧﻭﺍﻉ ﻧﻅﻡ‬ ‫ﺍﻟﺭﻱ ﺍﻟﺳﻁﺣﻲ )ﺍﻟﺭﻱ ﺑﺎﻟﺷﺭﺍﺋﺢ ‪ ،‬ﺍﻟﻐﻣﺭ‪ ،‬ﺍﻟﺭﻱ ﺍﻟﺣﻭﺿﻲ‪ ،‬ﻭﺍﻟﺭﻱ ﺑﺎﻟﺧﻁﻭﻁ(‪.‬ﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﺳﻁﺣﻲ ﻏﺎﻟﺑﺎ ﻣﺎ‬ ‫ﺗﺗﻁﻠﺏ ﺗﻛﻠﻔﺔ ﺑﺳــﻳﻁﺔ )ﺇﻻ ﻓﻲ ﺣﺎﻟﺔ ﺿــﺭﻭﺭﺓ ﺗﺳــﻭﻳﺔ ﺍﻟﺗﺭﺑﺔ( ﺑﺎﻹﺿــﺎﻓﺔ ﺇﻟﻰ ﺗﻛﻠﻔﺔ ﺍﻟﻌﻣﺎﻟﺔ ﻭﻫﺫﺍ ﺍﻟﻧﻅﺎﻡ ﻳﻘﻭﻡ‬ ‫ﺑﻌﻣﻠﻳﺔ ﺍﻟﻐﺳــﻳﻝ ﺑﻛﻔﺎءﺓ ﺃﻛﺑﺭ ﻣﻥ ﺃﻯ ﻧﻅﺎﻡ ﺁﺧﺭ‪.‬ﻭﻫﺫﺍ ﺍﻟﻧﻅﺎﻡ ﻣﻧﺎﺳــﺏ ﻟﻠﺗﺭﺑﺔ ﻣﻧﺧﻔﺿــﺔ ﺍﻟﻰ ﻣﺗﻭﺳــﻁﺔ ﺍﻟﻧﻔﺎﺫﻳﺔ‬ ‫ﻭﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻟﻣﻳﻝ ﺍﻟﻣﻧﺗﻅﻡ ﺃﻗﻝ ﻣﻥ ‪.٪٢‬‬ ‫‪٣-١‬ﻗﻳﺎﺱ ﺍﻟﺳﺭﻳﺎﻥ ﻭﻁﺭﻕ ﺍﻟﺗﻧﻅﻳﻡ ‪Flow measurement and regulating methods:‬‬ ‫ﺍﻥ ﺍﻟﺣﺻﻭﻝ ﻋﻠﻰ ﺑﻳﺎﻧﺎﺕ ﺍﻟﺳﺭﻳﺎﻥ ﻳﻌﺗﺑﺭ ﺃﺣﺩ ﺃﻫﻡ ﺍﻟﻌﻭﺍﻣﻝ ﺍﻟﻣﺅﺛﺭﺓ ﻓﻲ ﺗﻧﻅﻳﻡ ﻭﺗﻭﺯﻳﻊ ﺍﻟﻣﺎء ﺩﺍﺧﻝ ﺍﻟﺣﻘﻝ ﻛﺫﻟﻙ‬ ‫ﻫﻰ ﻣﻔﻳﺩﺓ ﻟﺗﺣﺩﻳﺩ ﺍﻟﻣﺷﻛﻼﺕ ﻣﺛﻝ ﺍﻧﺳﺩﺍﺩ ﺍﻟﺷﺑﻛﺔ ﺃﻭ ﺃﻋﻁﺎﻝ ﺍﻟﻁﻠﻣﺑﺎﺕ ﺃﻭ ﺣﺩﻭﺙ ﻛﺳﺭ ﺑﺎﻷﻧﺎﺑﻳﺏ‪.‬‬ ‫ﻭﻳﻌﺗﺑﺭ ﻗﻳﺎﺱ ﺍﻟﺳﺭﻳﺎﻥ ﻭﺗﻧﻅﻳﻣﻪ ﻣﺗﻁﻠﺏ ﺃﺳﺎﺳﻲ ﻟﻺﺩﺍﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ﻟﻠﻧﻅﺎﻡ ﻭﻳﺟﺏ ﻭﺿﻌﻪ ﻓﻲ ﺍﻻﻋﺗﺑﺎﺭ ﺃﺛﻧﺎء‬ ‫ﺍﻟﺗﺻﻣﻳﻡ‪.‬ﺍﻟﻬﺩﺍﺭﺍﺕ ﻭﺍﻟﻔﺗﺣﺎﺕ ﻫﻰ ﺃﻛﺛﺭ ﺃﺩﻭﺍﺕ ﺍﻟﻘﻳﺎﺱ ﺍﻟﻣﺳﺗﺧﺩﻣﺔ ﺷﻳﻭﻋﺎ ً ﻟﻠﻘﻧﻭﺍﺕ ﺍﻟﻣﻔﺗﻭﺣﺔ‪.‬ﺃﻣﺎ ﺍﻟﻣﻭﺟﺎﺕ‬ ‫ﻓﻭﻕ ﺍﻟﺻﻭﺗﻳﺔ ﻭﺃﻧﺎﺑﻳﺏ ﺑﻳﺗﻭﺕ ﻭﺍﻟﻔﻳﻧﺷﻭﻣﻳﺗﺭ ﻭﻋﺩﺍﺩﺍﺕ ﻗﻳﺎﺱ ﺍﻟﺗﺻﺭﻑ ﺗﺳﺗﺧﺩﻡ ﻟﻘﻳﺎﺱ ﺍﻟﺗﺻﺭﻑ ﻓﻲ ﺧﻁﻭﻁ‬ ‫ﺍﻷﻧﺎﺑﻳﺏ‪ ،‬ﻭﻳﺗﻡ ﺗﻧﻅﻳﻡ ﺍﻟﺳﺭﻳﺎﻥ ﻋﻥ ﻁﺭﻳﻖ ﺍﻟﺻﻣﺎﻣﺎﺕ ﻭﺍﻟﺑﻭﺍﺑﺎﺕ‪.‬ﻭﻳﺟﺏ ﻭﺿﻊ ﺃﺟﻬﺯﺓ ﺍﻟﻘﻳﺎﺱ ﻭﺍﻟﺗﻧﻅﻳﻡ ﻓﻲ‬ ‫ﻓﺗﺣﺎﺕ ﺩﺧﻭﻝ ﺍﻟﻣﺎء ﻭﻧﻘﻁ ﺍﻟﺗﻭﺯﻳﻊ ﺩﺍﺧﻝ ﺍﻟﺣﻘﻝ ﻭﻓﻰ ﺃﻯ ﻧﻘﻁ ﺃﺧﺭﻯ ﻳﻬﻡ ﻣﻌﺭﻓﺔ ﺃﻭ ﺗﻧﻅﻳﻡ ﺍﻟﺳﺭﻳﺎﻥ ﻋﻧﺩﻫﺎ‪.‬‬ ‫ﻛﺫﻟﻙ ﻓﻣﻊ ﻅﻬﻭﺭ ﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﺣﺩﻳﺙ ﺍﻟﺗﻲ ﺗﻌﺗﻣﺩ ﻋﻠﻰ ﺿﻐﻁ ﺍﻟﻣﺎء ﻓﻲ ﺗﻭﺯﻳﻊ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﻓﺎﻥ ﻫﻧﺎﻙ ﺣﺎﺟﺔ‬ ‫ﺷﺩﻳﺩﺓ ﻟﻘﻳﺎﺱ ﺿﻐﻁ ﺍﻟﺗﺷﻐﻳﻝ ﻓﻲ ﺃﺟﺯﺍء ﺍﻟﺷﺑﻛﺔ ﺍﻟﻣﺧﺗﻠﻔﺔ ﻟﻣﻌﺭﻓﺔ ﻫﻝ ﻫﻭ ﻣﻧﺎﺳﺏ ﻟﻠﺗﺷﻐﻳﻝ ﺃﻡ ﻻ ﻛﺫﻟﻙ ﻳﻣﻛﻥ‬ ‫ﻣﻥ ﺧﻼﻝ ﻭﺟﻭﺩﻩ ﻓﻲ ﻧﻘﺎﻁ ﻣﺧﺗﻠﻔﺔ ﻳﺎﻟﺷﺑﻛﺔ ﻣﻌﺭﻓﺔ ﻭﺟﻭﺩ ﺑﻌﺽ ﺍﻟﻌﻳﻭﺏ ﺑﺎﻟﺷﺑﻛﺔ ﻛﺎﻧﺳﺩﺍﺩ ﺍﻷﺟﺯﺍء ﺃﻭ ﻛﺳﺭﻫﺎ‬ ‫ﻭﻛﻔﺎءﺓ ﻋﻣﻝ ﺍﺟﻬﺯﺓ ﺍﻟﺗﺭﺷﻳﺢ‪.‬‬ ‫ﺷﻛﻝ)‪ :(٦-١‬ﻋﺩﺍﺩﺍﺕ ﺍﻟﺳﺭﻳﺎﻥ ﻭﻣﻘﺎﻳﻳﺱ ﺍﻟﺿﻐﻁ‬ ‫اﻟ ﺎب اﻟ ﺎﻧﻲ‪ :‬اﻟ ﺎدئ اﻷﺳﺎﺳ ﺔ ﻟﻠ‬ ‫ﺗﻘﺩﻳﻡ‬ ‫ﻳﺗﻡ ﺗﺻﻣﻳﻡ ﻧﻅﻡ ﺭﻯ ﺍﻟﺣﻘﻝ ﺑﺣﻳﺙ ﺗﻐﻁﻰ ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻣﺎﺋﻳﺔ ﺍﻟﻁﺑﻳﻌﻳﺔ ﻟﻠﻧﺑﺎﺕ ﻭﺍﻟﺗﻲ ﺗﺣﺩﺩ ﻣﻥ ﺧﻼﻝ‬ ‫ﺍﻟﻣﻧﺎﺥ ‪ ،‬ﺍﻟﺗﺭﺑﺔ ‪ ،‬ﺍﻟﻁﺑﻭﻏﺭﺍﻓﻳﺎ ‪،‬ﺃﻣﺎﻛﻥ ﺍﻹﻧﺷﺎءﺍﺕ ‪،‬ﺍﻷﻧﻬﺎﺭ ‪،‬ﺍﻟﻣﺟﺎﺭﻯ ﺍﻟﻣﺎﺋﻳﺔ ﻭﺍﻟﻁﺭﻕ ‪..‬ﺍﻟﺦ ‪.‬ﺑﺎﻻﺿﺎﻓﺔ‬ ‫ﻟﻣﺻﺎﺩﺭ ﻭﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻁﺎﻗﺔ ﻭﺍﻟﻣﺎء ﺍﻟﻼﺯﻣﺔ ﻟﻠﺭﻯ ﻭﺍﻟﺣﺎﻟﺔ ﺍﻻﻗﺗﺻﺎﺩﻳﺔ ﻟﻠﻣﺎﻟﻙ ﻭﺍﻟﺳﻌﺭ ﺍﻻﻗﺗﺻﺎﺩﻱ ﻟﻠﻧﺎﺗﺞ‪.‬‬ ‫ﻭﻅﻳﻔﺔ ﺍﻟﻣﺻﻣﻡ ﻫﻰ ﺗﻬﻳﺋﺔ ﺍﻟﻧﻅﺎﻡ ﻟﺗﺣﻘﻳﻖ ﺍﻟﺟﺎﻧﺏ ﺍﻟﻔﻳﺯﻳﺎﺋﻲ ﺃﻭ ﺍﻟﻣﺣﺳﻭﺱ ﺑﺎﻹﺿﺎﻓﺔ ﺍﻟﻰ ﻣﺭﺍﻋﺎﺓ ﺍﻟﺟﺎﻧﺏ‬ ‫ﺍﻻﻗﺗﺻﺎﺩﻱ ﻓﻲ ﺗﺷﻐﻳﻠﻪ‪.‬ﺍﻟﺧﻁﻭﺍﺕ ﺍﻷﻭﻟﻳﺔ ﻓﻲ ﺗﺻﻣﻳﻡ ﻧﻅﺎﻡ ﺭﻯ ﺍﻟﺣﻘﻝ ﺗﺷﻣﻝ‪.‬‬ ‫‪ ‬ﺟﻣﻊ ﺍﻟﺑﻳﺎﻧﺎﺕ ﺍﻟﻼﺯﻣﺔ ﻟﻠﺗﺻﻣﻳﻡ‪.‬‬ ‫‪ ‬ﺇﻳﺟﺎﺩ ﻭﺗﻘﻳﻳﻡ ﻣﺻﺩﺭ ﺍﻟﻣﻳﺎﻩ‪.‬‬ ‫‪ ‬ﺣﺳﺎﺏ ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻣﺎﺋﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ﺍﻟﺗﺻﻣﻳﻣﻳﺔ‪.‬‬ ‫‪ ‬ﺗﺻﻣﻳﻡ ﻧﻅﻡ ﻣﺧﺗﻠﻔﺔ ﻟﻌﻣﻠﻳﺔ ﺍﻟﺭﻱ ﺑﺎﻟﻣﺯﺭﻋﺔ‪.‬‬ ‫‪ ‬ﺗﻘﻳﻳﻡ ﺃﺩﺍء ﻫﺫﻩ ﺍﻟﻧﻅﻡ‪.‬‬ ‫‪ ‬ﺣﺳﺎﺏ ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺳﻧﻭﻳﺔ ﻭﺍﻟﻣﺗﻐﻳﺭﺓ ﻟﻬﺫﻩ ﺍﻟﻧﻅﻡ‪.‬‬ ‫‪ ‬ﺍﺧﺗﻳﺎﺭ ﺍﻧﺳﺏ ﻧﻅﺎﻡ‪.‬‬ ‫ﻭﺳﻳﺗﻡ ﻣﻧﺎﻗﺷﺔ ﻫﺫﻩ ﺍﻟﺧﻁﻭﺍﺕ ﻓﻳﻣﺎ ﻳﻠﻲ‪- :‬‬ ‫) ‪ ( ١ –٢‬ﺍﻟﺑﻳﺎﻧﺎﺕ ﺍﻟﻣﻁﻠﻭﺑﺔ ﻟﻠﺗﺻﻣﻳﻡ ‪Data requirement for design :‬‬ ‫ﺟﺯء ﺃﺳﺎﺳﻲ ﻣﻥ ﻋﻣﻠﻳﺔ ﺍﻟﺗﺻﻣﻳﻡ ﻫﻭ ﺟﻌﻝ ﺍﻟﺣﺳﺎﺑﺎﺕ ﺍﻟﻔﻳﺯﻳﺎﺋﻳﺔ ﻭﺍﻻﻗﺗﺻﺎﺩﻳﺔ ﻓﻲ ﺻﻭﺭﺓ ﻛﻣﻳﺔ ﻭﻧﺟﺎﺡ‬ ‫ﺍﻟﻣﺷﺭﻭﻉ ﻳﻌﺗﻣﺩ ﻋﻠﻰ ﺗﻭﻗﻳﺕ ﺗﻧﻔﻳﺫ ﻫﺫﻩ ﺍﻟﻣﺗﻁﻠﺑﺎﺕ‪ ،‬ﻓﺎﻟﻭﻗﺕ ﻭﺍﻟﻣﺟﻬﻭﺩ ﺍﻟﻣﺑﺫﻭﻝ ﻓﻲ ﺟﻣﻊ ﻫﺫﻩ ﺍﻟﺑﻳﺎﻧﺎﺕ ﻻ ﻳﺷﺗﺭﻁ‬ ‫ﺃﻥ ﻳﻛﻭﻥ ﻣﺣﺩﻭﺩﺍ ً ﻓﻘﺩ ﻳﺯﻳﺩ ﻋﻥ ﺍﻟﻭﻗﺕ ﺍﻟﻼﺯﻡ ﻟﻌﻣﻠﻳﺔ ﺍﻟﺗﺻﻣﻳﻡ ﺫﺍﺗﻬﺎ‪.‬ﺟﺩﻭﻝ )‪ (١-٣‬ﻳﻭﺿﺢ ﺍﻟﺑﻳﺎﻧﺎﺕ ﺍﻟﺭﺋﻳﺳﻳﺔ‬ ‫ﺍﻟﻣﻁﻠﻭﺑﺔ ﻟﺗﺻﻣﻳﻡ ﻧﻅﺎﻡ ﺭﻯ ﺣﻘﻠﻲ‪.‬ﻭﻓﻰ ﺑﻠﺩﺍﻥ ﺍﻟﻌﺎﻟﻡ ﺍﻟﻣﺧﺗﻠﻔﺔ ﻭﻣﻧﻬﺎ ﺍﻟﻭﻻﻳﺎﺕ ﺍﻟﻣﺗﺣﺩﺓ ﺍﻷﻣﺭﻳﻛﻳﺔ ﻣﺛﻼً ﻳﺗﻡ‬ ‫ﺟﻣﻊ ﻫﺫﻩ ﺍﻟﺑﻳﺎﻧﺎﺕ ﺑﺷﻛﻝ ﺭﻭﺗﻳﻧﻲ ﻭﻳﺗﻡ ﻧﺷﺭﻫﺎ ﻟﻳﺳﺗﻔﻳﺩ ﻣﻧﻬﺎ ﺍﻟﻣﺻﻣﻣﻭﻥ ﻭﺍﻟﻣﺯﺍﺭﻋﻭﻥ‪.‬ﻭﻫﺫﺍ ﻳﻭﺿﺢ ﻟﻧﺎ ﺍﻥ‬ ‫ﺍﻟﺣﻔﺎﻅ ﻋﻠﻰ ﺍﻟﻣﺎء ﻫﻭ ﻫﺩﻑ ﻗﻭﻣﻲ ﻻ ﻳﻣﻛﻥ ﺃﻥ ﻳﻛﻭﻥ ﺃﺻﺣﺎﺏ ﺍﻟﻣﺻﻠﺣﺔ ﻓﻳﻪ ﺑﻣﻌﺯﻝ ﻋﻥ ﺑﻌﺿﻬﻡ ﺍﻟﺑﻌﺽ‪.‬‬ ‫ﺍﻻ ﺃﻥ ﺍﻻﺧﺗﻼﻑ ﺍﻷﺳﺎﺳﻲ ﺳﻳﻛﻭﻥ ﻓﻲ ﻛﻡ ﺍﻟﺑﻳﺎﻧﺎﺕ ﺍﻟﻣﻘﺩﻣﺔ ﻫﻝ ﻫﻰ ﺑﻳﺎﻧﺎﺕ ﻣﻧﺎﺥ ﻓﻘﻁ ﺃﻡ ﺑﻳﺎﻧﺎﺕ ﻋﻥ‬ ‫ﻁﺑﻳﻌﺔ ﺍﻟﺗﺭﺑﺔ ﻭﻣﺩﻯ ﺗﻭﻓﺭ ﺍﻟﻣﺎء ﻭﺟﻭﺩﺗﻪ ﻭﻧﻭﻉ ﺍﻟﻐﻁﺎء ﺍﻟﺧﺿﺭﻱ ﻭﺣﺎﻟﺔ ﺍﻟﻧﻘﻝ ﻭﺍﻟﻣﻭﺍﺻﻼﺕ‪...‬ﺍﻟﺦ ﻭﻛﻠﻬﺎ‬ ‫ﻋﻧﺎﺻﺭ ﺗﺩﺧﻝ ﺑﺷﻛﻝ ﺃﺳﺎﺳﻲ ﻓﻲ ﺗﺻﻣﻳﻡ ﻧﻅﻡ ﺍﻟﺭﻱ ﻭﺍﺧﺗﻳﺎﺭ ﺃﻧﺳﺑﻬﺎ ﻭﻫﻧﺎ ﻳﻣﻛﻥ ﺃﻥ ﻧﻁﻠﻖ ﻗﺎﻋﺩﺓ ﻟﻌﻣﻠﻳﺔ ﺍﻟﺗﺻﻣﻳﻡ‬ ‫ﻭﻫﻰ " ﺑﻘﺩﺭ ﻣﺎ ﻳﺗﻭﻓﺭ ﻟﺩﻳﻧﺎ ﻣﻥ ﺑﻳﺎﻧﺎﺕ ﺗﺯﺩﺍﺩ ﻓﺭﺹ ﻧﺟﺎﺡ ﺗﺻﻣﻳﻡ ﻭﺍﺩﺍﺭﺓ ﻧﻅﻡ ﺍﻟﺭﻱ"‪.‬‬ ‫ﺟﺩﻭﻝ )‪ :(١-٢‬ﺍﻟﺑﻳﺎﻧﺎﺕ ﺍﻷﺳﺎﺳﻳﺔ ﺍﻟﻣﻁﻠﻭﺑﺔ ﻋﻧﺩ ﺍﻟﺷﺭﻭﻉ ﻓﻲ ﻭﺿﻊ ﺗﺻﻣﻳﻡ ﻧﻅﺎﻡ ﺍﻟﺭﻱ‬ ‫ﺍﻟﻣﺗﻁﻠﺏ‬ ‫ﻧﻭﻉ ﺍﻟﺑﻳﺎﻥ‬ ‫ﻏﺎﻟﺑﺎ ً ﻳﻛﻭﻥ ﻫﻧﺎﻙ ﺣﺎﺟﺔ ﻟﺑﻳﺎﻧﺎﺕ ﺳﻧﻭﻳﺔ ﻋﻥ ﺩﺭﺟﺔ ﺍﻟﺣﺭﺍﺭﺓ‪ ،‬ﺍﻟﺭﻁﻭﺑﺔ ﺍﻟﻧﺳﺑﻳﺔ‪،‬‬ ‫ﻛﻣﻳﺔ ﺍﻷﻣﻁﺎﺭ‪ ،‬ﺳﺭﻋﺔ ﺍﻟﺭﻳﺎﺡ‪ ،‬ﺍﻻﺷﻌﺎﻉ ﺍﻟﺷﻣﺳﻲ ﻭﺫﻟﻙ ﻟﺣﺳﺎﺏ ﻗﻳﻣﺔ ﺍﻟﺑﺧﺭ‬ ‫ﺍﻟﻣﻧﺎﺥ‬ ‫ﻧﺗﺢ ﺍﻟﻣﺭﺟﻌﻲ ﻭﻳﺗﻭﻗﻑ ﻧﻭﻉ ﺍﻟﺑﻳﺎﻧﺎﺕ ﺍﻟﻣﻁﻠﻭﺑﺔ ﻁﺑﻘﺎ ً ﻟﻁﺭﻳﻘﺔ ﺍﻟﺣﺳﺎﺏ‬ ‫ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﻣﻁﻠﻭﺏ ﺯﺭﺍﻋﺗﻬﺎ ﻣﻥ ﻛﻝ ﻣﺣﺻﻭﻝ‪ ،‬ﻣﺩﻯ ﻣﻼءﻣﺗﻪ ﻟﻧﻭﻉ ﺍﻟﺗﺭﺑﺔ‬ ‫ﻭﻅﺭﻭﻑ ﺍﻟﻣﻧﺎﺥ ﻭﻧﻭﻋﻳﺔ ﺍﻟﻣﻳﺎﻩ‪ ،‬ﺍﻣﻛﺎﻧﻳﺔ ﺍﻟﺗﺳﻭﻳﻖ‪ ،‬ﻣﻌﺎﻣﻝ ﺍﻟﻣﺣﺻﻭﻝ‪،‬‬ ‫ﺍﻟﻣﺣﺻﻭﻝ‬ ‫ﻭﻣﻭﺍﻋﻳﺩ ﺍﻟﺯﺭﺍﻋﺔ‬ ‫ﻧﻭﻉ ﺍﻟﺗﺭﺑﺔ ﻓﻲ ﻣﺳﺎﺣﺎﺕ ﺍﻟﻣﺯﺭﻋﺔ ﺍﻟﻣﺧﺗﻠﻔﺔ‪ ،‬ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ‪ ،‬ﺍﻟﻣﺳﺎﻣﻳﺔ‪ ،‬ﻋﻣﻖ‬ ‫ﺍﻟﺗﺭﺑﺔ‬ ‫ﺍﻟﺗﺭﺑﺔ‪ ،‬ﻧﻭﻋﻳﺔ ﺍﻷﻣﻼﺡ‪ ،‬ﻣﺩﻯ ﺗﻭﺍﻓﺭ ﺍﻟﻌﻧﺎﺻﺭ ﺍﻟﻐﺫﺍﺋﻳﺔ ﺑﻬﺎ‪...‬ﺍﻟﺦ‬ ‫ﻣﻭﻗﻊ ﻣﺻﺩﺭ ﺍﻟﻣﺎء ﻭﻧﻭﻋﻳﺗﻪ‪ ،‬ﺗﻘﻳﻳﻡ ﻣﺩﻯ ﺻﻼﺣﻳﺗﻪ ﻟﻠﺭﻯ ﻭﺍﺳﺗﻣﺭﺍﺭﻳﺗﻪ ﻓﻲ‬ ‫ﺍﻻﻣﺩﺍﺩ ﺍﻟﻣﺎﺋﻲ‬ ‫ﺧﺩﻣﺔ ﺍﻟﻣﺳﺎﺣﺎﺕ ﺍﻟﻣﻁﻠﻭﺑﺔ‬ ‫ﻣﻭﻗﻊ ﻣﺻﺩﺭ ﺍﻟﻁﺎﻗﺔ ﻭﻧﻭﻋﺔ‪ ،‬ﺍﻟﺗﻛﻠﻔﺔ ﺍﻟﻣﺗﻭﻗﻌﺔ‪.‬‬ ‫ﻣﺻﺩﺭ ﺍﻟﻁﺎﻗﺔ‬ ‫ﺭﺃﺱ ﺍﻟﻣﺎﻝ‬ ‫ﺗﻭﻓﺭ ﺭﺃﺱ ﺍﻟﻣﺎﻝ ﻻﻧﺷﺎء ﺍﻟﺷﺑﻛﺔ‪ ،‬ﻣﺩﻯ ﺗﻭﻓﺭ ﺍﻟﻌﻣﺎﻟﺔ ﻭﻣﻬﺎﺭﺗﻬﺎ ﻭﺗﻛﻠﻔﺗﻬﺎ‪.‬‬ ‫ﻭﺍﻟﻌﻣﺎﻟﺔ‬ ‫ﻁﺑﻭﻏﺭﺍﻓﻳﺔ ﺍﻟﻣﻧﻁﻘﺔ‪ ،‬ﺍﻟﻣﺑﺎﻧﻲ ﺍﻟﻣﺣﻳﻁﺔ‪ ،‬ﺷﺑﻛﺔ ﺍﻟﻁﺭﻕ ﻭﺍﻟﻣﻭﺍﺻﻼﺕ‪،‬‬ ‫ﺑﻳﺎﻧﺎﺕ ﺍﺿﺎﻓﻳﺔ‬ ‫ﺍﻟﻣﺻﺎﺭﻑ‪.‬‬ ‫)‪ (٢ –١‬ﺗﻘﻳﻳﻡ ﻣﺻﺩﺭ ﺍﻟﻣﺎء ‪:Water source evaluation‬‬ ‫ﺇﻥ ﺇﻳﺟﺎﺩ ﻣﺻﺩﺭ ﻣﺗﺎﺡ ﻟﻠﻣﺎء ﻫﻭ ﺃﻭﻟﻰ ﻣﺗﻁﻠﺑﺎﺕ ﻋﻣﻠﻳﺔ ﺍﻟﺭﻱ ﺍﻟﻧﺎﺟﺣﺔ ﻭﻳﻣﻛﻥ ﺍﻟﺣﺻﻭﻝ ﻋﻠﻰ ﻣﺎء‬ ‫ﺍﻟﺭﻱ ﻣﻥ ﻣﺻﺩﺭ ﺳﻁﺣﻲ ﺃﻭ ﺗﺣﺕ ﺳﻁﺣﻲ‪.‬ﺍﻟﻣﺻﺎﺩﺭ ﺍﻟﺳﻁﺣﻳﺔ ﺗﺷﻣﻝ ﺍﻟﻣﺟﺎﺭﻯ ﺍﻟﻣﺎﺋﻳﺔ‪ ،‬ﺍﻟﺑﺣﻳﺭﺍﺕ‪ ،‬ﻭﺍﻟﻘﻧﻭﺍﺕ‬ ‫ﺑﻳﻧﻣﺎ ﺍﻵﺑﺎﺭ ﻭﺍﻟﻌﻳﻭﻥ ﻫﻰ ﺍﻟﻣﺻﺎﺩﺭ ﺍﻟﺭﺋﻳﺳﻳﺔ ﻟﻠﻣﺎء ﺗﺣﺕ ﺍﻟﺳﻁﺣﻲ‪.‬ﻳﺟﺏ ﺇﺟﺭﺍء ﺗﺣﻠﻳﻝ ﻟﻬﻳﺩﺭﻭﻟﻭﺟﻳﺔ ﺍﻟﻣﻳﺎﻩ‬ ‫ﻟﺑﻳﺎﻥ ﺍﻟﻛﻣﻳﺎﺕ ﺍﻟﻣﺗﺎﺣﺔ ﻋﻠﻰ ﺍﻟﻣﺩﻯ ﺍﻟﻁﻭﻳﻝ ﻋﺎﻣﺎ ً ﺑﻌﺩ ﻋﺎﻡ ﺑﺎﻹﺿﺎﻓﺔ ﻟﺗﻘﻳﻳﻡ ﻟﻣﺩﻯ ﺻﻼﺣﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﻟﻼﺳﺗﺧﺩﺍﻡ‬ ‫ﻭﻣﻼءﻣﺗﻬﺎ ﻟﻧﻭﻋﻳﺎﺕ ﺍﻟﻣﺣﺎﺻﻳﻝ ﺍﻟﻣﻧﺯﺭﻋﺔ ﻭﺍﻟﺗﺭﺑﺔ ﺍﻟﻣﻭﺟﻭﺩﺓ‪.‬‬ ‫ﺻﻼﺣﻳﺔ ﻣﺎء ﺍﻟﺭﻱ ﻳﺗﻡ ﺗﺣﺩﻳﺩﻫﺎ ﺑﻣﻘﺎﺭﻧﺔ ﻫﺫﻩ ﺍﻟﻣﺅﺷﺭﺍﺕ ﺑﻣﺎ ﻫﻭ ﻣﻁﻠﻭﺏ ﻟﻠﻣﺯﺭﻋﺔ‪.‬ﻓﻲ ﺣﺎﻟﺔ ﺍﺭﺗﻔﺎﻉ‬ ‫ﺗﻛﺎﻟﻳﻑ ﺍﻟﺣﺻﻭﻝ ﻋﻠﻰ ﻣﺎء ﺍﻟﺭﻱ ﺃﻭ ﻋﺩﻡ ﺗﻳﺳﺭﻩ ﻟﺭﻯ ﺍﻟﺣﻘﻝ ﺑﺻﻭﺭﺓ ﻛﺎﻣﻠﺔ ﻳﺟﺏ ﻫﻧﺎ ﻭﺿﻊ ﺍﺳﺗﺭﺍﺗﻳﺟﻳﺎﺕ‬ ‫ﻟﻌﻣﻝ ﺭﻯ ﺟﺯﺋﻲ ﻟﻠﺣﻘﻝ ﺳﻭﺍء ﺑﺗﺧﻔﻳﺽ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﺗﻰ ﺗﺭﻭﻯ ﺭﻳﺎ ﻛﺎﻣﻼ ﺃﻭ ﺑﺗﺧﻔﻳﺽ ﻛﻣﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻱ‬ ‫ﺍﻟﻣﺳﺗﺧﺩﻣﺔ‪.‬‬ ‫)‪ (٣– ١‬ﺣﺳﺎﺏ ﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻯ ﺍﻟﺗﺻﻣﻳﻣﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ‪Determining daily design :‬‬ ‫‪irrigation requirements‬‬ ‫ﺇﻥ ﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻱ ﺍﻟﺗﺻﻣﻳﻣﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ) ‪ ( D D I R‬ﻫﻰ ﺍﻟﻣﻌﺩﻝ ﺍﻟﺫﻱ ﻳﺟﺏ ﺍﻋﻁﺎﺅﻩ ﻣﻥ ﻣﺎء ﺍﻟﺭﻱ‬ ‫ﻟﻠﻭﺻﻭﻝ ﻟﻠﻣﺳﺗﻭﻯ ﺍﻟﻣﻁﻠﻭﺏ ﻣﻥ ﺍﻟﺭﻱ‪.‬ﻓﻲ ﺑﻌﺽ ﺍﻟﺣﺎﻻﺕ ﺗﻛﻭﻥ ﺃﻗﺻﻰ ﺍﺣﺗﻳﺎﺟﺎﺕ ﻣﺎﺋﻳﺔ ﻳﻭﻣﻳﺔ ﻣﺭﺗﺑﻁﺔ‬ ‫ﺑﺈﻋﺩﺍﺩ ﺍﻷﺭﺽ ) ﻣﺛﻝ ﺇﻋﺩﺍﺩ ﺃﺭﺍﺿﻲ ﺍﻷﺭﺯ( ﻭﻟﻳﺱ ﺑﺎﻻﺳﺗﻬﻼﻙ ﺍﻟﻣﺎﺋﻲ ‪.‬ﻭﻗﻳﻣﺔ ‪ D D I R‬ﺗﻣﺛﻝ ﺑﻭﺣﺩﺍﺕ‬ ‫ﻁﻭﻝ )ﻋﻣﻖ( ﻟﻛﻝ ﻭﺣﺩﺓ ﺯﻣﻥ ‪.‬ﻭﺗﺧﺗﻠﻑ ﻫﺫﻩ ﺍﻟﻘﻳﻣﺔ ﻟﻧﻅﺎﻡ ﺍﻟﺭﻱ ﺑﺎﺧﺗﻼﻑ ﺍﻟﻣﺣﺻﻭﻝ ﻭﺍﻟﻣﻧﺎﺥ ﻭﺍﻟﺗﺭﺑﺔ ‪.‬‬ ‫ﻭﻗﻳﻣﺗﻬﺎ ﺗﻛﻭﻥ ﻛﺑﻳﺭﺓ ﻟﻠﻣﺣﺎﺻﻳﻝ ﺫﺍﺕ ﺍﻟﻧﻣﻭ ﺍﻟﺟﺫﺭﻱ ﺍﻟﻣﺣﺩﻭﺩ ﻭﺍﻟﺣﺳﺎﺳﺔ ﻟﻠﻣﺎء ﻭﻟﺣﺳﺎﺏ ﺍﻟﺗﻐﻳﺭﺍﺕ ﺍﻟﺳﻧﻭﻳﺔ ﻓﻲ‬ ‫‪.DDIR‬‬ ‫ﻗﻳﻡ ﺍﻻﺳﺗﻬﻼﻙ ﺍﻟﻣﺎﺋﻲ ﻓﺈﻧﻧﺎ ﻧﺣﺗﺎﺝ ﻟﺑﻳﺎﻧﺎﺕ ﻣﻧﺎﺧﻳﺔ ﻟﺳﻧﻭﺍﺕ ﻋﺩﻳﺩﺓ ﺣﺗﻰ ﻧﺗﻣﻛﻥ ﻣﻥ ﺣﺳﺎﺏ‬ ‫ﻭﺑﺻﻔﺔ ﻋﺎﻣﺔ ﻓﺈﻥ ﻗﻳﻡ ‪ D D I R‬ﻟﻠﻣﺣﺎﺻﻳﻝ ﺍﻟﺗﻰ ﺗﻧﻣﻭ ﻓﻲ ﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ ﺍﻟﻣﻧﺧﻔﺿﺔ‬ ‫ﻣﺛﻝ ﺍﻷﺭﺍﺿﻲ ﺍﻟﺭﻣﻠﻳﺔ ﺃﻋﻠﻰ ﻣﻧﻬﺎ ﻓﻲ ﺍﻷﺭﺍﺿﻲ ﺫﺍﺕ ﺍﻟﻘﻭﺍﻡ ﺍﻟﻧﺎﻋﻡ ﻭﺍﻟﺗﻲ ﺗﻛﻭﻥ ﻗﻳﻡ ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ ﻟﻬﺎ ﻋﺎﻟﻳﺔ‪.‬‬ ‫ﻭﻫﺫﺍ ﻳﺭﺟﻊ ﺍﻟﻰ ﺍﻥ ﺍﻟﻔﻭﺍﺻﻝ ﺍﻟﺯﻣﻧﻳﺔ ﻣﺎ ﺑﻳﻥ ﺍﻟﺭﻳﺎﺕ ﺗﺯﻳﺩ ﻣﻊ ﺯﻳﺎﺩﺓ ﻗﺩﺭﺓ ﻣﺳﻙ ﺍﻷﺭﺽ ﻟﻠﻣﺎء ﻭﻣﺗﻭﺳﻁ‬ ‫ﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻱ ﺍﻟﻳﻭﻣﻳﺔ ﺗﻛﻭﻥ ﺍﺻﻐﺭ ﻛﻠﻣﺎ ﺗﺑﺎﻋﺩﺕ ﺍﻟﻔﺗﺭﺓ ﺑﻳﻥ ﺍﻟﺭﻳﺎﺕ ‪.‬ﻗﻳﻣﺔ ‪ D D I R‬ﻟﻣﺯﺭﻋﺔ ﻳﻣﻛﻥ‬ ‫ﺇﻳﺟﺎﺩﻫﺎ ﻣﻥ ﺣﺳﺎﺏ ﺍﻻﺳﺗﻬﻼﻙ ﺍﻟﻣﺎﺋﻲ ﺍﻟﻳﻭﻡ )‪ ( D D I R‬ﻟﻌﺩﺓ ﺳﻧﻭﺍﺕ ﻭﻗﻳﻣﺔ ‪ D D I R‬ﻟﻛﻝ ﺳﻧﺔ ﺗﺣﺳﺏ‬ ‫ﻣﻥ ﺧﻼﻝ ﻣﻌﺎﺩﻟﺔ ﺑﻧﻣﺎﻥ ﺃﻭ ﻣﻥ ﺧﻼﻝ ﺃﻭﻋﻳﺔ ﺍﻟﺑﺧﺭ ﻣﻊ ﻓﺭﺽ ﻛﻔﺎءﺓ ﺍﻟﻧﻅﺎﻡ ﺍﻟﻛﻠﻳﺔ ‪. ٪١٠٠‬‬ ‫ﻗﻳﻣﺔ ‪ D D I R‬ﺑﻁﺑﻳﻌﺗﻬﺎ ﺃﻗﻝ ﻣﻥ ﻗﻳﻣﺔ ﺃﻗﺻﻰ ﺍﺣﺗﻳﺎﺝ ﻳﻭﻣﻲ ﻧﻅﺭﺍ ً ﻟﻘﺩﺭﺓ ﺍﻟﻣﺎء ﺍﻟﻣﺧﺯﻥ ﻓﻲ ﺍﻟﺗﺭﺑﺔ ﻋﻠﻰ‬ ‫ﺗﻐﻁﻳﺔ ﻫﺫﺍ ﺍﻻﺣﺗﻳﺎﺝ‪.‬ﻓﻲ ﺣﺎﻟﺔ ﻋﺩﻡ ﺍﻣﻛﺎﻧﻳﺔ ﺍﻻﺳﺗﻔﺎﺩﺓ ﻣﻥ ﺍﻟﻣﺣﺗﻭﻯ ﺍﻟﻣﺎﺋﻲ ﺍﻟﻣﻭﺟﻭﺩ ﺑﺎﻟﺗﺭﺑﺔ ﻓﺈﻥ ‪D D I R‬‬ ‫ﺗﺳﺎﻭﻯ ﺃﻗﺻﻰ ﺍﺣﺗﻳﺎﺝ ﻣﺎﺋﻲ ﻳﻭﻣﻲ‪.‬ﻳﺗﻡ ﺣﺳﺎﺏ ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺗﺻﻣﻳﻣﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ﻣﻥ ﺍﻟﻣﻌﺎﺩﻟﺔ ﺍﻟﺗﺎﻟﻳﺔ‪- :‬‬ ‫‪AD‬‬ ‫‪D D I R‬‬ ‫)‪...........(2  1‬‬ ‫‪T I min‬‬ ‫ﺣﻳﺙ ‪:‬‬ ‫‪AD‬‬ ‫ﺍﻟﻧﻘﺹ ﺍﻟﻣﺎﺋﻲ ﺍﻟﻣﺳﻣﻭﺡ ﺑﻪ ﺑﻳﻥ ﺍﻟﺭﻳﺎﺕ ) ﻣﻡ(‬ ‫‪TImin‬‬ ‫ﺃﻗﻝ ﻓﺎﺻﻝ ﺯﻣﻧﻲ ﺑﻳﻥ ﺍﻟﺭﻳﺎﺕ ) ﻳﻭﻡ (‬ ‫ﻭﻗﻳﻣﺔ ‪ AD‬ﺗﻔﺭﺽ ﺑﺄﻧﻬﺎ ﺗﺳــــﺎﻭﻱ ﻋﻣﻖ ﺍﻟﻣﺎء ﺍﻟﻣﺗﺎﺡ ﺑﻳﺳــــﺭ ‪ Readily available water‬ﻭﻳﺭﻣﺯ ﻟﻪ‬ ‫ﺍﺧﺗﺻــــﺎﺭﺍ ً )‪.(RAW‬ﻓﻲ ﺣﺎﻝ ﺍﺳــــﺗﺧﺩﺍﻡ ﺍﺳــــﺗﺭﺍﺗﻳﺟﻳﺔ ﺍﻟﻧﻘﺹ ﺍﻟﻣﺎﺋﻲ )‪ (Deficit irrigation‬ﻳﻣﻛﻥ ﺃﻥ‬ ‫ﺗﺗﺳﺎﻭﻯ ﻗﻳﻣﺗﻰ ‪.RAW,AD‬‬ ‫ﻗﻳﻣﺔ ‪ D D I R‬ﺍﻟﻛﻠﻳﺔ ﻟﻠﻣﺯﺭﻋﺔ) ‪ ( D D I Rf‬ﻳﺗﻡ ﺇﻳﺟﺎﺩﻫﺎ ﻋﻥ ﻁﺭﻳﻖ ﺣﺳﺎﺏ ﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻱ ﻟﻠﻣﺣﺎﺻﻳﻝ‬ ‫ﺍﻟﻣﺧﺗﻠﻔﺔ ﻟﻠﻣﺯﺭﻋﺔ ﺍﻟﻣﺣﺳــﻭﺑﺔ ﻋﻥ ﻁﺭﻳﻖ ﺍﻟﻣﻌﺎﺩﻟﺔ )‪.(١–٣‬ﻭﻳﺗﻡ ﺣﺳــﺎﺏ ﺍﻟﻛﻣﻳﺔ ﻟﻠﻣﺯﺭﻋﺔ ﻋﻥ ﻁﺭﻳﻖ ﺟﻣﻊ‬ ‫ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻣﺎﺋﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ﻟﻠﻣﺣﺎﺻﻳﻝ ﺍﻟﻣﻭﺟﻭﺩﺓ ﺑﺎﻟﻣﺯﺭﻋﺔ ‪.‬ﺃﻭ ﻣﻥ ﺍﻟﻣﻌﺎﺩﻟﺔ )‪.(٢-٢‬‬ ‫‪n‬‬ ‫‪ (A )(DIR‬‬ ‫‪i‬‬ ‫‪i‬‬ ‫‪)j‬‬ ‫‪(D I R f ) j ‬‬ ‫‪i 1‬‬ ‫‪n‬‬ ‫)‪..........(2  2‬‬ ‫‪A‬‬ ‫‪i 1‬‬ ‫‪i‬‬ ‫ﺣﻳﺙ‪-:‬‬ ‫‪DIRf‬‬ ‫ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻣﺎﺋﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ﻟﻠﻣﺯﺭﻋﺔ‬ ‫‪DIRi‬‬ ‫ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻣﺎﺋﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ﻟﻠﻣﺣﺻﻭﻝ‬ ‫‪Ai‬‬ ‫ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﻣﻧﺯﺭﻋﺔ ﺑﺎﻟﻣﺣﺻﻭﻝ‬ ‫‪n‬‬ ‫ﻋﺩﺩ ﺍﻟﻣﺣﺎﺻﻳﻝ ﺍﻟﻧﺎﻣﻳﺔ ﺑﺎﻟﻣﺯﺭﻋﺔ‬ ‫‪j‬‬ ‫ﺍﻟﻳﻭﻡ ﺍﻟﻣﻁﻠﻭﺏ ﻣﻥ ﻣﻭﺳﻡ ﺍﻟﻧﻣﻭ‬ ‫ﻳﺟﺏ ﺇﺟﺭﺍء ﺗﺣﻠﻳﻝ ﺩﻭﺭﻱ ﻟﻘﻳﻣﺔ )‪ ( D D I R‬ﺳﻧﻭﻳﺎ ﻣﻊ ﺍﺧﺗﻼﻑ ﺍﻟﻣﻧﺎﺥ ‪.‬ﻫﺫﺍ ﺍﻟﺗﺣﻠﻳﻝ ﻳﻣﻛﻥ ﻣﻥ ﺧﻼﻟﻪ ﺍﻟﺗﻧﺑﺅ‬ ‫ﺑﻘﻳﻣﺔ )‪.( D D I Rf‬‬ ‫ﻭﻗﺩ ﻭﺿﻌﺕ ﺟﻣﻌﻳﺔ ﺧﺩﻣﺎﺕ ﺍﺳﺗﺻﻼﺡ ﺍﻷﺭﺍﺿﻰ ﺍﻷﻣﺭﻳﻛﻳﺔ ﻣﻌﺎﺩﻟﺔ ﻟﺣﺳﺎﺏ ﻗﻳﻡ ‪ DDIR‬ﻣﻥ ﺧﻼﻝ ﻗﻳﻡ‬ ‫ﺍﻻﺳﺗﻬﻼﻙ ﺍﻟﻣﺎﺋﻲ ﺷﻬﺭﻳﺎ ً ﺍﻟﻌﻅﻣﻰ‪.‬‬ ‫‪ET m1.09‬‬ ‫‪DDIR  0.034‬‬ ‫)‪.......(2-3‬‬ ‫‪MAD 0.09‬‬ ‫ﺣﻳﺙ‪-:‬‬ ‫‪DDIR‬‬ ‫ﺍﻻﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﻣﺎﺋﻳﺔ ﺍﻟﻳﻭﻣﻳﺔ ﺍﻟﺗﺻﻣﻳﻣﻳﺔ )ﻣﻡ ‪ /‬ﻳﻭﻡ(‬ ‫‪ETm‬‬ ‫ﻣﺗﻭﺳﻁ ﺍﻟﻘﻳﻡ ﺍﻟﻌﻅﻣﻰ ﻟﻼﺳﺗﻬﻼﻙ ﺍﻟﻣﺎﺋﻲ ﺍﻟﺷﻬﺭﻯ ) ﻣﻡ(‬ ‫‪MAD‬‬ ‫ﺍﻟﻧﻘﺹ ﺍﻟﻣﺎﺋﻲ ﺍﻟﻣﺳﻣﻭﺡ ﺑﻪ ﻣﺎ ﺑﻳﻥ ﺍﻟﺭﻳﺎﺕ )ﻣﻡ(‬ ‫)‪ (٤ – ١‬ﻭﺿﻊ ﺗﺻﻣﻳﻣﺎﺕ ﻣﺧﺗﻠﻔﺔ ‪:Alternative designs‬‬ ‫ﻣﻥ ﺍﻟﻁﺑﻳﻌﻰ ﺃﻥ ﻳﻛﻭﻥ ﻫﻧﺎﻙ ﻧﻅﻡ ﻣﺧﺗﻠﻔﺔ ﻳﻣﻛﻥ ﻣﻥ ﺧﻼﻟﻬﺎ ﺭﻯ ﺍﻟﺣﻘﻝ ﻭﺃﻥ ﻳﻛﻭﻥ ﻫﻧﺎﻙ ﻧﻭﻋﻳﺎﺕ ﻣﺧﺗﻠﻔﺔ ﻣﻥ‬ ‫ﻫﺫﻩ ﺍﻟﻧﻅﻡ‪.‬ﻭﻳﺟﺏ ﻋﻠﻰ ﺍﻟﻣﺻﻣﻡ ﺃﻥ ﻳﺿﻊ ﻫﺫﻩ ﺍﻷﻧﻭﺍﻉ ﻓﻲ ﺍﻻﻋﺗﺑﺎﺭ ﺛﻡ ﻳﺧﺗﺎﺭ ﺍﺣﺳﻧﻬﺎ‪.‬ﻭﻳﺟﺏ ﺃﻥ ﻳﺗﻭﺍﻓﺭ ﻓﻲ‬ ‫ﺍﻟﻧﻅﺎﻡ ﻣﺭﻭﻧﺔ ﻓﻲ ﺗﻐﻳﻳﺭﺓ ﺃﻭ ﺗﻐﻳﺭ ﻁﺭﻳﻘﺔ ﺇﺩﺭﺍﺗﻪ ﻣﺳﺗﻘﺑﻼ‪.‬ﻭﻳﻣﻛﻥ ﺃﻥ ﻳﻛﻭﻥ ﺑﻌﺽ ﻫﺫﻩ ﺍﻟﻧﻅﻡ ﻣﻌﺗﻣﺩﺍ ً ﻋﻠﻰ‬ ‫ﺯﻳﺎﺩﺓ ﺍﻟﻣﺎء ﺍﻟﻣﻌﻁﻰ ﻟﻠﻣﺣﺻﻭﻝ ﻭﺍﻵﺧﺭ ﻋﻠﻰ ﺇﻧﻘﺎﺻﻬﺎ‪.‬ﻭﺍﺧﺗﻳﺎﺭ ﺃﺣﺩ ﻫﺫﻩ ﺍﻟﻧﻅﻡ ﻳﻌﺗﻣﺩ ﻓﻲ ﺍﻟﺑﺩﺍﻳﺔ ﻋﻠﻰ ﺍﺧﺗﻳﺎﺭ‬ ‫ﻁﺭﻳﻘﺔ ﺍﻹﺿﺎﻓﺔ ﻭﺍﻟﺗﺭﻛﻳﺏ ﺍﻟﻔﻳﺯﻳﺎﺋﻰ ﻭﺍﻻﻗﺗﺻﺎﺩﻱ ﻟﻠﻣﺯﺭﻋﺔ‪.‬ﺟﺩﻭﻝ )‪ (٢ – ١‬ﻳﻭﺿﺢ ﺍﻟﻌﻭﺍﻣﻝ ﺍﻟﺭﺋﻳﺳﻳﺔ‬ ‫ﺍﻟﻭﺍﺟﺏ ﻭﺿﻌﻬﺎ ﻓﻲ ﺍﻻﻋﺗﺑﺎﺭ ﻋﻧﺩ ﺍﺧﺗﻳﺎﺭ ﻁﺭﻳﻘﺔ ﺍﻹﺿﺎﻓﺔ‪.‬ﻭﻋﻧﺩﻣﺎ ﻳﻛﻭﻥ ﺍﻻﺧﺗﻳﺎﺭ ﺻﻌﺑﺎ ﻳﻣﻛﻥ ﺍﻻﺧﺗﻳﺎﺭ ﻋﻠﻰ‬ ‫ﺃﺳﺎﺱ ﺍﻟﻣﻔﺎﺿﻠﺔ ﺑﻳﻥ ﻫﺫﻩ ﺍﻟﻧﻘﻁ ﻛﻝ ﻋﻠﻰ ﺣﺩﻩ ﺣﺳﺏ ﺃﻫﻣﻳﺗﻬﺎ‪.‬‬ ‫ﺟﺩﻭﻝ )‪ :(٢-٣‬ﺃﺳﺱ ﻣﻔﺎﺿﻠﺔ ﻭﺍﺧﺗﻳﺎﺭ ﻧﻅﺎﻡ ﺍﻟﺭﻯ ﺍﻟﻣﻧﺎﺳﺏ‬ ‫ﺍﻟﺭﻯ ﺑﺎﻟﺗﻧﻘﻳﻁ‬ ‫ﺍﻟﺣﺭﻛﺔ ﺍﻟﻣﻳﻛﺎﻧﻳﻛﻳﺔ‬ ‫ﺍﻟﺣﺭﻛﺔ ﺍﻟﻣﻳﻛﺎﻧﻳﻛﻳﺔ‬ ‫ﻧﻅﻡ ﺍﻟﺭﻯ‬ ‫ﺍﻟﻧﻅﻡ ﺍﻟﺛﺎﺑﺗﺔ‬ ‫ﺍﻟﺭﻯ ﺍﻟﺣﻭﺿﻲ‬ ‫ﻭﺃﻧﺎﺑﻳﺏ ﺍﻟﺭﺷﺢ‬ ‫ﺍﻟﻣﺳﺗﻣﺭﺓ‬ ‫ﺍﻟﻣﺗﻘﻁﻌﺔ‬ ‫ﺍﻟﺳﻁﺣﻲ ﺍﻟﻣﻁﻭﺭ‬ ‫ﻣﺗﻭﺳﻁ ﺍﻟﻰ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻛﻝ‬ ‫ﻣﺗﻭﺳﻁ ﺍﻟﻰ ﻣﺭﺗﻔﻊ‬ ‫ﺍﻟﻛﻝ‬ ‫ﻣﺗﻭﺳﻁ‬ ‫ﻣﻌﺩﻝ ﺍﻟﺗﺳﺭﺏ‬ ‫ﻣﻧﺧﻔﺽ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻛﻝ‬ ‫ﻳﺻﻣﻡ ﻁﺑﻘﺎ ً ﻟﻣﻼءﻣﺔ ﺍﻟﺣﺭﻛﺔ‬ ‫ﻣﻳﻝ ﻣﺣﺩﻭﺩ‬ ‫ﻣﻳﻝ ﺑﺳﻳﻁ‬ ‫ﺍﻟﻁﺑﻭﻏﺭﺍﻓﻳﺔ‬ ‫ﺍﻟﻣﺣﺎﺻﻳﻝ ﺫﺍﺕ‬ ‫ﺍﻟﻛﻝ ﻣﺎ ﻋﺩﺍ‬ ‫ﻣﺣﺎﺻﻳﻝ ﻣﺣﺩﻭﺩﺓ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻣﺣﺎﺻﻳﻝ‬ ‫ﺍﻟﺭﺑﺣﻳﺔ‬ ‫ﺍﻷﺷﺟﺎﺭ ﻭﺍﻷﻋﻧﺎﺏ‬ ‫ﺍﻻﺭﺗﻔﺎﻉ‬ ‫ﻛﻣﻳﺎﺕ ﻣﺣﺩﻭﺩﺓ‬ ‫ﻛﻣﻳﺎﺕ ﻣﺣﺩﻭﺩﺓ‬ ‫ﻛﻣﻳﺎﺕ ﻣﺣﺩﻭﺩﺓ‬ ‫ﻛﻣﻳﺎﺕ ﻣﺣﺩﻭﺩﺓ‬ ‫ﻛﻣﻳﺎﺕ ﻛﺑﻳﺭﺓ ﺟﺩﺍ ً‬ ‫ﻛﻣﻳﺎﺕ ﻛﺑﻳﺭﺓ‬ ‫ﺍﻻﻣﺩﺍﺩ ﺍﻟﻣﺎﺋﻲ‬ ‫ﺍﻟﻛﻝ ﻣﻊ ﺍﻣﻛﺎﻧﻳﺔ‬ ‫ﺍﻟﻛﻝ ﻣﺎ ﻋﺩﺍ ﺫﺍﺕ‬ ‫ﺍﺳﺗﺧﺩﺍﻡ ﻣﺎء ﺫﻭ‬ ‫ﻣﺎء ﺫﻭ ﻣﻠﻭﺣﺔ ﻣﺣﺩﻭﺩﺓ ﻧﻅﺭﺍ ً ﻟﺗﺿﺭﺭ ﺍﻟﻧﺑﺎﺗﺎﺕ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺟﻭﺩﺓ ﺍﻟﻣﺎء‬ ‫ﺍﻟﻣﻠﻭﺣﺔ ﺍﻟﻌﺎﻟﻳﺔ‬ ‫ﻣﻠﻭﺣﺔ ﻣﺭﺗﻔﻌﺔ‬ ‫‪٪٩٠-٨٠‬‬ ‫‪٪٨٠-٧٠‬‬ ‫‪٪٨٠‬‬ ‫‪٪٨٠-٧٠‬‬ ‫‪٪٨٠‬‬ ‫‪٪٧٠-٦٠‬‬ ‫ﺍﻟﻛﻔﺎءﺓ‬ ‫ﺍﻋﺩﺍﺩ ﺑﺳﻳﻁﺔ‬ ‫ﺍﻋﺩﺍ ﺑﺳﻳﻁﺔ‬ ‫ﺍﻋﺩﺍﺩ ﺑﺳﻳﻁﺔ ﺗﺩﺭﻳﺏ‬ ‫ﺍﻋﺩﺍﺩ ﻣﺗﻭﺳﻁﺔ‬ ‫ﺗﺩﺭﻳﺏ ﺑﺳﻳﻁ ﻭﺃﻋﺩﺍﺩ‬ ‫ﻋﻣﺎﻟﺔ ﻣﺩﺭﺑﺔ‬ ‫ﺑﺗﺩﺭﻳﺏ ﻣﻥ ﻣﺗﻭﺳﻁ‬ ‫ﺍﻟﻌﻣﺎﻟﺔ‬ ‫ﺑﺗﺩﺭﻳﺏ ﻋﺎﻟﻲ‬ ‫ﺑﺳﻳﻁ‬ ‫ﺗﺩﺭﻳﺏ ﺑﺳﻳﻁ‬ ‫ﺑﺳﻳﻁﺔ‬ ‫ﻭﺍﻋﺩﺍﺩ ﻛﺑﻳﺭﺓ‬ ‫ﺍﻟﻰ ﻋﺎﻟﻲ‬ ‫ﻣﺭﺗﻔﻊ‬ ‫ﻣﺭﺗﻔﻊ‬ ‫ﺑﺳﻳﻁ‬ ‫ﺑﺳﻳﻁ‬ ‫ﺑﺳﻳﻳﻁ‬ ‫ﺑﺳﻳﻁ ﺍﻟﻰ ﻣﺗﻭﺳﻁ‬ ‫ﺭﺃﺱ ﺍﻟﻣﺎﻝ‬ ‫ﺟﺩﻭﻝ )‪ :(٢-٣‬ﺃﺳﺱ ﻣﻔﺎﺿﻠﺔ ﻭﺍﺧﺗﻳﺎﺭ ﻧﻅﺎﻡ ﺍﻟﺭﻯ ﺍﻟﻣﻧﺎﺳﺏ‬ ‫ﺍﻟﺭﻯ ﺑﺎﻟﺗﻧﻘﻳﻁ‬ ‫ﺍﻟﺣﺭﻛﺔ ﺍﻟﻣﻳﻛﺎﻧﻳﻛﻳﺔ‬ ‫ﺍﻟﺣﺭﻛﺔ ﺍﻟﻣﻳﻛﺎﻧﻳﻛﻳﺔ‬ ‫ﻧﻅﻡ ﺍﻟﺭﻯ‬ ‫ﺍﻟﻧﻅﻡ ﺍﻟﺛﺎﺑﺗﺔ‬ ‫ﺍﻟﺭﻯ ﺍﻟﺣﻭﺿﻲ‬ ‫ﻭﺃﻧﺎﺑﻳﺏ ﺍﻟﺭﺷﺢ‬ ‫ﺍﻟﻣﺳﺗﻣﺭﺓ‬ ‫ﺍﻟﻣﺗﻘﻁﻌﺔ‬ ‫ﺍﻟﺳﻁﺣﻲ ﺍﻟﻣﻁﻭﺭ‬ ‫ﻣﻧﺧﻔﺽ ﺍﻟﻰ‬ ‫ﻣﺗﻭﺳﻁﺔ ﺍﻟﻰ‬ ‫ﻣﺗﻭﺳﻁﺔ ﺍﻟﻰ‬ ‫ﻣﺗﻭﺳﻁﺔ‬ ‫ﻣﻧﺧﻔﺿﺔ‬ ‫ﻣﻧﺧﻔﺿﺔ‬ ‫ﺍﻟﻁﺎﻗﺔ‬ ‫ﻣﺗﻭﺳﻁ‬ ‫ﻣﺭﺗﻔﻌﺔ‬ ‫ﻣﺭﺗﻔﻌﺔ‬ ‫ﻣﻬﺎﺭﺍﺕ‬ ‫ﻣﺭﺗﻔﻊ‬ ‫ﻣﺗﻭﺳﻁ‬ ‫ﻣﺗﻭﺳﻁ ﺍﻟﻰ ﻣﺭﺗﻔﻊ‬ ‫ﻣﺗﻭﺳﻁﺔ‬ ‫ﻣﺗﻭﺳﻁﺔ‬ ‫ﻣﺗﻭﺳﻁﺔ‬ ‫ﺍﻻﺩﺍﺭﺓ‬ ‫ﺍﻟﻌﻣﺭ‬ ‫ﻳﺗﻭﻗﻑ ﺣﺳﺏ‬ ‫ﻁﻭﻳﻝ‬ ‫ﻁﻭﻳﻝ‬ ‫ﻗﺻﻳﺭ ﺍﻟﻰ ﻣﺗﻭﺳﻁ‬ ‫ﻗﺻﻳﺭ ﺍﻟﻰ ﻣﺗﻭﺳﻁ‬ ‫ﻁﻭﻳﻝ‬ ‫ﺍﻻﻓﺗﺭﺍﺿﻲ‬ ‫ﺍﻻﺩﺍﺭﺓ‬ ‫ﻻ ﻳﻔﺿﻝ ﻓﻲ‬ ‫ﻻ ﻳﻔﺿﻝ ﻓﻲ‬ ‫ﺃﺩﺍء ﺃﻓﺿﻝ ﻣﻊ‬ ‫ﺍﻟﻣﻧﺎﻁﻖ ﺫﺍﺕ‬ ‫ﺍﻟﻣﻧﺎﻁﻖ ﺫﺍﺕ‬ ‫ﺍﻟﻛﻝ‬ ‫ﻭﺟﻭﺩ ﺭﻳﺎﺡ ﻋﻥ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻛﻝ‬ ‫ﺍﻟﻣﻧﺎﺥ‬ ‫ﺳﺭﻋﺎﺕ ﺍﻟﺭﻳﺎﺡ‬ ‫ﺳﺭﻋﺎﺕ ﺍﻟﺭﻳﺎﺡ‬ ‫ﻧﻅﻡ ﺍﻟﺭﺵ ﺍﻷﺧﺭﻯ‬ ‫ﺍﻟﻣﺭﺗﻔﻌﺔ‬ ‫ﺍﻟﻣﺭﺗﻔﻌﺔ‬ ‫ﺍﺿﺎﻓﺔ‬ ‫ﺟﻳﺩ ﺟﺩﺍ ً‬ ‫ﺟﻳﺩ‬ ‫ﺟﻳﺩ‬ ‫ﺟﻳﺩ‬ ‫ﺟﻳﺩ‬ ‫ﺿﻌﻳﻑ‬ ‫ﺍﻟﻛﻳﻣﺎﻭﻳﺎﺕ‬ ‫ﺑﻌﺩ ﺫﻟﻙ ﺗﺄﺗﻰ ﻁﺭﻳﻘﺔ ﺍﻟﺗﻭﺻﻳﻝ ﻭﺃﻭﺿﺎﻋﻬﺎ ﺩﺍﺧﻝ ﺍﻟﻣﺯﺭﻋﺔ ﻁﺑﻘﺎ ً ﻟﻁﺑﻭﻏﺭﺍﻓﻳﺔ ﺍﻟﺗﺭﺑﺔ ﻭﻣﻭﻗﻊ ﺍﻟﻣﺯﺭﻋﺔ‪.‬‬ ‫ﻭﺍﻟﺗﺻﻣﻳﻡ ﺍﻟﻬﻳﺩﺭﻭﻟﻳﻛﻰ ﻳﺑﺩﺃ ﻣﻊ ﺍﺧﺗﻳﺎﺭ ﻧﻅﺎﻡ ﺍﻹﺿﺎﻓﺔ ﻭﻁﺭﻳﻘﺔ ﺍﻟﺗﻭﺻﻳﻝ ﻭﻧﻬﺎﻳﺗﻬﺎ‪.‬ﺍﺛﻧﺎء ﺍﻟﺗﺻﻣﻳﻡ ﻓﺈﻥ‬ ‫ﺍﻟﺭﺷﺎﺷﺎﺕ ﻭﺃﺩﻭﺍﺕ ﺍﻟﺗﻧﻘﻳﻁ ﻭﺃﺷﻛﺎﻝ ﺍﻟﺧﻁﻭﻁ ﻭﺍﻟﻣﺳﺎﻓﺎﺕ ﻭﻁﻭﻟﻬﺎ ﻭﻁﻭﻝ ﺍﻟﻣﺟﺎﺭﻯ ﺍﻟﻣﺎﺋﻳﺔ ﺗﻭﺿﻊ ﻋﻠﻰ ﺃﺳﺎﺱ‬ ‫ﺧﻁ ﺍﻷﻧﺎﺑﻳﺏ ﺃﻭ ﺧﻭﺍﺹ ﺍﻟﻘﻧﻭﺍﺕ‪.‬ﻭﻳﺗﻡ ﺍﺧﺗﻳﺎﺭ ﻧﻅﺎﻡ ﺍﻟﺿﺦ ﻓﻲ ﺍﻟﻧﻬﺎﻳﺔ‪.‬‬ ‫) ‪ ( ٥ – ٢‬ﺃﺩﺍء ﻧﻅﻡ ﺍﻟﺭﻯ ‪: Performance of farm irrigation systems :‬‬ ‫ﻳﺗﻡ ﺗﺻﻣﻳﻡ ﻧﻅﻡ ﺍﻟﺭﻱ ﻭﺗﺷﻐﻳﻠﻬﺎ ﺑﺣﻳﺙ ﺗﻐﻁﻰ ﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺣﻘﻭﻝ ﺑﺎﻟﻣﺯﺭﻋﺔ ﻣﻊ ﺗﺣﻛﻣﻬﺎ ﻓﻲ ﺍﻟﺗﺳﺭﺏ‬ ‫ﺍﻟﻌﻣﻳﻖ ﻭﺍﻟﺟﺭﻳﺎﻥ ﺍﻟﺳﻁﺣﻲ ﻭﺍﻟﺑﺧﺭ ﻭﻓﻭﺍﻗﺩ ﺍﻟﺗﺷﻐﻳﻝ‪.‬ﻭﻳﺗﻡ ﺣﺳﺎﺏ ﻛﻔﺎءﺓ ﻧﻅﺎﻡ ﺍﻟﺭﻱ ﺑﻛﻔﺎءﺓ ﺗﻭﺻﻳﻠﻪ ﻟﻠﻣﺎء‬ ‫ﻭﻛﻔﺎﻳﺔ ﻭﺍﻧﺗﻅﺎﻡ ﺍﻹﺿﺎﻓﺔ ﻓﻲ ﻛﻝ ﺣﻘﻭﻝ ﺍﻟﻣﺯﺭﻋﺔ ﻭﻓﻳﻣﺎ ﻳﻠﻰ ﻣﻧﺎﻗﺷﺔ ﻫﺫﻩ ﺍﻟﻣﺅﺷﺭﺍﺕ‪.‬‬ ‫) ‪ ( ١ – ٥ – ٢‬ﺍﻟﻛﻔﺎءﺓ ‪- :Efficiency‬‬ ‫ﺍﻟﻛﻔﺎءﺓ ﺍﻟﻛﻠﻳﺔ ﻟﻧﻅﺎﻡ ﺍﻟﺭﻱ ﻳﺗﻡ ﺍﻳﺟﺎﺩﻫﺎ ﻛﻧﺳﺑﺔ ﻣﺋﻭﻳﺔ ﻟﻠﻣﺎء ﺍﻟﻣﺿﺎﻑ ﺑﺎﻟﻧﺳﺑﺔ ﻟﻠﻣﺎء ﺍﻟﻣﺳﺗﻔﺎﺩ ﻣﻧﻪ ﻓﻲ‬ ‫ﺍﻟﺭﻱ ‪.‬ﻭﺍﻟﻛﻔﺎءﺓ ﺍﻟﻛﻠﻳﺔ ﺗﻌﺭﻑ ﺑﻛﻔﺎءﺓ ﺍﻟﺭﻱ ﻭﺗﺣﺳﺏ ﺭﻳﺎﺿﻳﺎ ﻣﻥ ﺍﻟﻣﻌﺎﺩﻻﺕ )‪.(٥ – ٢) ،(٤ – ٢‬‬ ‫‪I L‬‬ ‫‪E I  100‬‬ ‫‪............................  2 – 4‬‬ ‫‪‬‬ ‫‪S‬‬ ‫ﺣﻳﺙ‪:‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺭﻯ = ‪E I‬‬ ‫ﺍﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻯ = ‪I‬‬ ‫ﺍﺣﺗﺎﺟﺎﺕ ﺍﻟﻐﺳﻳﻝ = ‪L‬‬ ‫ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﻣﻌﻁﺎﻩ = ‪S‬‬ ‫ﺍﻟﺗﻭﺯﻳﻊ ﻏﻳﺭ ﺍﻟﻣﻧﺗﻅﻡ ﻟﻣﻳﺎﻩ ﺍﻟﺭﻯ ﻣﻥ ﺧﻼﻝ ﺍﻟﻧﻅﺎﻡ ﺳﻭﻑ ﻳﺅﺛﺭ ﻋﻠﻰ ﺍﻟﻔﻭﺍﻗﺩ ﻋﻥ ﻁﺭﻳﻖ ﺯﻳﺎﺩﺓ ﺍﻟﻔﻘﺩ ﺑﺎﻟﺗﺳﺭﺏ‬ ‫ﻭﺍﻟﺟﺭﻳﺎﻥ ﺍﻟﺳﻁﺣﻲ ﻓﻲ ﺍﻟﻣﻧﺎﻁﻖ ﺍﻟﺗﻲ ﺗﺣﺻﻝ ﻋﻠﻰ ﻛﻣﻳﺎﺕ ﺯﺍﺋﺩﺓ ﻣﻥ ﻣﻳﺎﻩ ﺍﻟﺭﻱ‪.‬‬ ‫ﻭﻋﻧﺩ ﺗﻘﻳﻳﻡ ﺃﺩﺍء ﻧﻅﺎﻡ ﺍﻟﺭﻱ ﻓﺈﻧﻪ ﻋﺎﺩﺓ ﻳﻛﻭﻥ ﻣﻥ ﺍﻟﻣﻔﻳﺩ ﺍﺧﺗﺑﺎﺭ ﻛﻔﺎءﺓ ﻛﻝ ﺟﺯء ﻣﻥ ﻣﻛﻭﻧﺎﺗﻪ‪.‬ﻭﻫﺫﺍ ﻳﺗﻳﺢ ﺍﻟﺗﻌﺭﻑ‬ ‫ﻋﻠﻰ ﺍﻷﺟﺯﺍء ﺍﻟﺗﻰ ﻻ ﺗﻌﻣﻝ ﺑﻛﻔﺎءﺓ ‪.‬ﺍﻷﺟﺯﺍء ﺍﻟﺗﺎﻟﻳﺔ ﺗﻧﺎﻗﺵ ﺣﺳﺎﺏ ﻛﻔﺎءﺓ ﺍﻟﺗﺧﺯﻳﻥ ﺩﺍﺧﻝ ﻣﺟﺎﻝ ﺍﻟﺟﺫﻭﺭ‪،‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺗﻭﺻﻳﻝ ﻭﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ﻭﺍﻟﻛﻔﺎءﺓ ﺍﻟﻛﻠﻳﺔ ﻟﻠﻧﻅﺎﻡ ﻫﻭ ﻧﺎﺗﺞ ﻫﺫﻩ ﺍﻟﻛﻔﺎءﺍﺕ ﻛﻣﺎ ﻓﻲ ﻣﻌﺎﺩﻟﺔ )‪.(٥-٢‬‬ ‫‪E r Ec Ea‬‬ ‫(‪E I  100‬‬ ‫‪.‬‬ ‫‪.‬‬ ‫)‪)...............(2-5‬‬ ‫‪100 100 100‬‬ ‫ﺣﻳﺙ ‪:‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺭﻯ ‪E I = %‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺗﺧﺯﻳﻥ ‪Er = %‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺗﻭﺻﻳﻝ ‪E c =%‬‬ ‫ﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ‪Ea = %‬‬ ‫ﻟﻠ ان ‪:Reservoir storage efficiency‬‬ ‫)‪ (١-١-٥-٢‬ﻛﻔﺎءة اﻟ‬ ‫ﺍﻟﻛﻔﺎءﺓ ﺍﻟﺗﻰ ﻳﺗﻡ ﺑﻬﺎ ﺗﺧﺯﻳﻥ ﺍﻟﻣﺎء ﻓﻲ ﺍﻟﺗﺭﺑﺔ ﺗﻘﻝ ﺑﺯﻳﺎﺩﺓ ﻓﻭﺍﻗﺩ ﺍﻟﺑﺧﺭﻭﺍﻟﺗﺳﺭﺏ ﺍﻟﺟﺎﻧﺑﻰ‪.‬ﺍﻟﻣﻌﺎﺩﻟﺔ )‪(٦-٢‬‬ ‫ﺗﻭﺿﺢ ﻁﺭﻳﻘﺔ ﺣﺳﺎﺏ ﺍﻟﻛﻔﺎءﺓ ﺍﻟﺗﺧﺯﻳﻧﻳﺔ ‪.‬‬ ‫‪V V s V e‬‬ ‫‪E r  100( i‬‬ ‫‪ V  S‬‬ ‫‪)  100 o‬‬ ‫)‪.........(2  6‬‬ ‫‪Vi‬‬ ‫‪Vi‬‬ ‫ﺣﻳﺙ‪-:‬‬ ‫‪Er‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺗﺧﺯﻳﻥ ‪%‬‬ ‫‪Ve‬‬ ‫ﺣﺟﻡ ﺍﻟﺑﺧﺭ ﻣﻥ ﺍﻟﺧﺯﺍﻥ‬ ‫‪Vs‬‬ ‫ﺣﺟﻡ ﺍﻟﺗﺳﺭﺏ ﺍﻟﺟﺎﻧﺑﻰ ﻣﻥ ﺍﻟﺧﺯﺍﻥ‬ ‫‪Vi‬‬ ‫ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﺩﺍﺧﻠﺔ ﺧﻼﻝ ﻓﺗﺭﺓ ﺯﻣﻧﻳﺔ ﻣﻌﻳﻧﺔ‬ ‫‪Vo‬‬ ‫ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﺧﺎﺭﺝ ﺧﻼﻝ ﻧﻔﺱ ﺍﻟﻔﺗﺭﺓ‬ ‫‪ΔS‬‬ ‫ﺍﻟﺗﻐﻳﺭ ﻓﻰ ﺍﻟﻛﻣﻳﺔ ﺍﻟﻣﺧﺯﻧﺔ ﺧﻼﻝ ﺍﻟﻔﺗﺭﺓ ﺍﻟﺯﻣﻧﻳﺔ‬ ‫‪ΔS‬ﻋﺑﺎﺭﻩ ﻋﻥ ﺍﻟﻛﻣﻳﺔ ﺍﻟﻣﺿــﺎﻓﺔ ﻟﻠﺣﻔﺎﻅ ﻋﻠﻰ ﻣﺳــﺗﻭﻯ ﺍﻟﻣﺎء ﻓﻲ ﺍﻟﺧﺯﺍﻥ ﻋﻧﺩ ﻣﺣﺗﻭﻯ ﺭﻁﻭﺑﻲ ﻣﻌﻳﻥ ﻭﺍﻟﺫﻱ‬ ‫ﻳﻛﻭﻥ ﻣﻁﻠﻭﺏ ﻋﻧﺩ ﺑﺩﺍﻳﺔ ﺍﻟﺣﺎﺟﺔ ﺍﻟﺭﻱ‪.‬ﻭﻫﻰ ﻗﻳﻣﺔ ﺳــﺎﻟﺑﺔ ﻋﻧﺩﻣﺎ ﻳﻛﻭﻥ ﺍﻟﻣﻁﻠﻭﺏ ﺍﺿــﺎﻓﺔ ﺍﻟﻣﺎء ﻭﻣﻭﺟﺑﺔ ﻋﻧﺩ‬ ‫ﺍﻟﺭﻏﺑﺔ ﻓﻲ ﺍﺯﺍﻟﺔ ﺍﻟﻣﺎء‪.‬ﻭﻳﻣﻛﻥ ﺇﻫﻣﺎﻝ ﻗﻳﻣﺔ‪ ΔS‬ﻟﻠﻔﺗﺭﺍﺕ ﺍﻟﺯﻣﻧﻳﺔ ﺍﻟﻁﻭﻳﻠﺔ‪.‬‬ ‫)‪ (٢-١-٥-٢‬ﻛﻔﺎءﺓ ﺍﻟﺗﻭﺻﻳﻝ ‪:Conveyance efficiency‬‬ ‫ﻛﻔﺎءﺓ ﺗﻭﺻﻳﻝ ﺍﻟﻣﺎء)‪ (Ec‬ﻫﻰ ﺍﻟﻧﺳﺑﺔ ﺍﻟﻣﺋﻭﻳﺔ ﻟﻠﻣﺎء ﺍﻟﺧﺎﺭﺝ ﻣﻥ ﺍﻟﻘﻧﺎﺓ ﺃﻭ ﺧﻁ ﺃﻧﺎﺑﻳﺏ ﺍﻟﺗﻭﺻﻳﻝ ﺇﻟﻰ‬ ‫ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﺩﺍﺧﻠﺔ ﻟﻧﻅﺎﻡ ﺍﻟﺗﻭﺻﻳﻝ ‪.‬ﻭﻳﺗﻡ ﺣﺳﺎﺑﻬﺎ ﻣﻥ ﺍﻟﻣﻌﺎﺩﻟﺔ )‪ (٨ – ٢‬ﻛﻣﺎ ﻳﻠﻰ ‪:‬‬ ‫‪ Vco ‬‬ ‫‪Ec  100 ‬‬ ‫)‪........(2  8‬‬ ‫‪ Vci ‬‬ ‫‪Ec‬‬ ‫ﻛﻔﺎءﺓ ﺍﻟﺗﻭﺻﻳﻝ‬ ‫‪Vco‬‬ ‫ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﺧﺎﺭﺟﺔ ﻣﻥ ﻧﻅﺎﻡ ﺍﻟﺗﻭﺻﻳﻝ‬ ‫‪Vci‬‬ ‫ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﺩﺍﺧﻠﺔ ﻟﻧﻅﺎﻡ ﺍﻟﺗﻭﺻﻳﻝ‬ ‫)‪ (٣-١-٥-٢‬ﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ‪Application efficiency:‬‬ ‫ﻛﻔﺎءﺓ ﺇﺿﺎﻓﺔ ﺍﻟﻣﺎء ) ‪ ( Ea‬ﻫﻰ ﺍﻟﻧﺳﺑﺔ ﺍﻟﻣﺋﻭﻳﺔ ﻟﻠﻣﺎء ﺍﻟﺫﻱ ﻳﺳﺗﻔﻳﺩ ﻣﻧﻪ ﺍﻟﻧﺑﺎﺕ ﺍﻟﻰ ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﻭﺍﺻﻝ‬ ‫ﺍﻟﻰ ﺍﻟﺣﻘﻝ ‪.‬ﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ﻳﻣﻛﻥ ﺣﺳﺎﺑﻬﺎ ﻟﻛﻝ ﺣﻘﻝ ﻣﻧﻔﺻﻼ ﻓﻲ ﺍﻟﻣﺯﺭﻋﺔ ﻭﺗﻡ ﺣﺳﺎﺑﻬﺎ ﻣﻥ ﺍﻟﻣﻌﺎﺩﻟﺔ )‪(٩-٢‬‬ ‫ﻛﻣﺎ ﻳﻠﻲ‪-:‬‬ ‫‪bu‬‬ ‫‪I L‬‬ ‫(‪Ea  100‬‬ ‫(‪)  100‬‬ ‫)‪).........(2-9‬‬ ‫‪a‬‬ ‫‪a‬‬ ‫‪Ea‬‬ ‫ﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ﻛﻧﺳﺑﺔ ﻣﺋﻭﻳﺔ‬ ‫‪Vbu‬‬ ‫ﺍﻟﻣﺎء ﺍﻟﺫﻱ ﻳﺳﺗﻔﻳﺩ ﻣﻧﻪ ﺍﻟﻣﺣﺻﻭﻝ‬ ‫‪Va‬‬ ‫ﺣﺟﻡ ﺍﻟﻣﺎء ﺍﻟﻣﺿﺎﻑ‬ ‫)‪ (٢-٥-٢‬ﺍﻧﺗﻅﺎﻡ ﺍﻹﺿﺎﻓﺔ ‪:Application uniformity‬‬ ‫ﺍﻧﺗﻅﺎﻡ ﺍﻹﺿﺎﻓﺔ ﻳﻭﺿﺢ ﻛﻳﻑ ﻳﺗﻡ ﺇﺿﺎﻓﺔ ﺍﻟﻣﺎء ﻟﺣﻅﻳﺎ ﻓﻲ ﺍﻟﺣﻘﻝ ﻭﻣﺩﻯ ﺗﺟﺎﻧﺱ ﻭﺗﻘﺎﺭﺏ ﻣﻌﺩﻻﺕ‬ ‫ﺳﺭﻳﺎﻥ ﺍﻟﻣﺎء ﺃﺛﻧﺎء ﺗﻭﺯﻳﻌﻬﺎ ﻋﻠﻰ ﺍﻟﻧﺑﺎﺗﺎﺕ ﻓﻲ ﺍﻟﺣﻘﻝ‪.‬ﻭﺳﻭﻑ ﻳﺗﻡ ﻋﺭﺽ ﻛﻳﻔﻳﺔ ﺗﻘﻳﻳﻡ ﺃﺩﺍء ﻧﻅﺎﻡ ﺍﻟﺭﻱ ﺗﻔﺻﻳﻠﻳﺎ ً‬ ‫ﻭﺣﺳﺎﺏ ﻣﺅﺷﺭﺍﺕ ﺍﻻﻧﺗﻅﺎﻡ ﺑﺎﻟﺑﺎﺏ ﺍﻟﺗﺎﺳﻊ ﻣﻥ ﻫﺫﺍ ﺍﻟﻛﺗﺎﺏ‪.‬‬ ‫) ‪ (٦ – ٢‬ﻛﻔﺎﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻯ‪adequacy of irrigationِ:‬‬ ‫ﻭﻫﻰ ﻋﺑﺎﺭﺓ ﻋﻥ ﺍﻟﻛﻣﻳﺔ ﺍﻟﺗﻲ ﺗﺩﺧﻝ ﺍﻟﺣﻘﻝ ﻟﻠﻭﺻﻭﻝ ﺑﻣﺳﺗﻭﻯ ﺍﻻﻧﺗﺎﺝ ﻭﺟﻭﺩﺗﻪ ﻟﻠﻣﺳﺗﻭﻯ ﺍﻟﺭﺑﺣﻲ‪.‬ﻭﺣﻳﺙ‬ ‫ﺃﻥ ﺍﻟﺗﻌﺭﻳﻑ ﻳﺗﻁﻠﺏ ﻣﻌﺭﻓﺔ ﻅﺭﻭﻑ ﻛﻝ ﻣﻥ ﺍﻟﻣﺣﺻﻭﻝ ﻭﺍﻟﺗﺭﺑﺔ ﻭﺍﻟﺳﻭﻕ ﻓﺈﻥ ﺍﻟﻛﻔﺎﻳﺔ ﻳﻣﻛﻥ ﺗﻌﺭﻳﻔﻬﺎ ﻋﻠﻰ ﺃﻧﻬﺎ‬ ‫ﻧﺳﺑﺔ ﺍﻷﺭﺽ ﻣﻥ ﺍﻟﻣﺯﺭﻋﺔ ﺍﻟﺗﻲ ﻳﺻﻠﻬﺎ ﻛﻣﻳﺔ ﻣﺎء ﻛﺎﻓﻲ ﺃﻭ ﺯﺍﺋﺩﺓ ﻋﻥ ﺍﻻﺣﺗﻳﺎﺟﺎﺕ‪.‬‬ ‫ﻛﻔﺎﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﻳﺗﻡ ﺗﻘﻳﻳﻣﻬﺎ ﻛﻣﺎ ﻓﻲ ﺷﻛﻝ )‪ (١ – ٢‬ﻫﺫﺍ ﺍﻟﺷﻛﻝ ﻳﻭﺿﺢ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﺗﻲ ﻳﺻﻠﻬﺎ ﻣﺎء‬ ‫ﻛﺎﻓﻲ ﺃﻭ ﻛﻣﻳﺔ ﺃﻛﺑﺭ ﻣﻥ ﺣﺩ ﺍﻟﻛﻔﺎﻳﺔ‪.‬ﻭﺍﻟﺧﻁ ﺍﻟﻣﻧﻘﻁ ﻳﺷﻳﺭ ﺇﻟﻰ ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﻣﺭﻏﻭﺏ ﺃﺿﺎﻓﺗﻬﺎ‪.‬ﻭﻛﻔﺎﻳﺔ ﻣﻳﺎﻩ‬ ‫ﺍﻟﺭﻱ ﻓﻲ ﺷﻛﻝ )‪ % ٥٠ (١– ٢‬ﻭﻫﺫﺍ ﻳﻌﻧﻰ ﺃﻥ ‪ % ٥٠‬ﻓﻘﻁ ﻣﻥ ﺍﻟﻣﺳﺎﺣﺔ ﻫﻰ ﺍﻟﺗﻲ ﻳﺻﻠﻬﺎ ﺍﺣﺗﻳﺎﺟﺎﺗﻬﺎ ﺍﻟﻣﺎﺋﻳﺔ‬ ‫ﺃﻭ ﺃﻛﺛﺭ ﻣﻧﻬﺎ ‪.‬ﻳﻣﻛﻥ ﺇﻧﺷﺎء ﻫﺫﺍ ﺍﻟﻣﺧﻁﻁ ﻋﻥ ﻁﺭﻳﻖ ﺍﻳﺟﺎﺩ ﻛﻣﻳﺔ ﺍﻟﻣﺎء ﺍﻟﺗﻰ ﺗﻡ ﺗﺟﻣﻳﻌﻬﺎ ﻭﻣﻥ ﻣﻧﺎﻁﻖ ﻣﺧﺗﻠﻔﺔ‬ ‫ﻣﻥ ﺍﻟﺣﻘﻝ ﻭﺍﻟﻧﺳﺑﺔ ﺍﻟﺗﻲ ﺗﻣﺛﻬﺎ ﻫﺫﻩ ﺍﻟﻣﻧﻁﻘﺔ ﻣﻥ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﻛﻠﻳﺔ‪.‬‬ ‫ﺷﻛﻝ)‪ :(١-٢‬ﺗﻘﻳﻳﻡ ﻭﺣﺳﺎﺏ ﻣﺩﻯ ﻛﻔﺎﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻱ‬ ‫ﺑﻌﺩ ﺫﻟﻙ ﻳﺗﻡ ﺗﺭﺗﻳﺏ ﻫﺫﻩ ﺍﻟﻛﻣﻳﺎﺕ ﺗﻧﺎﺯﻟﻳﺎ ﻭﻳﺗﻡ ﺣﺳﺎﺏ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﺗﻲ ﺗﺳﺗﻘﺑﻝ ﻛﻝ ﻛﻣﻳﺔ‪.‬ﺟﺩﻭﻝ )‪(٤-٢‬‬ ‫ﻳﻭﺿﺢ ﻁﺭﻳﻘﺔ ﺗﺭﺗﻳﺏ ﺍﻟﺑﻳﺎﻧﺎﺕ‪.‬ﻓﺎﺫﺍ ﻛﺎﻥ ﻟﺩﻳﻧﺎ ﺑﻳﺎﻧﺎﺕ ﻟﻌﻣﻖ ﺍﻟﻣﺎء ﺍﻟﻣﺿﺎﻑ ﻛﻣﺎ ﻓﻲ ﺟﺩﻭﻝ )‪ (٤-٣‬ﻭﻛﺎﻥ ﻋﻣﻖ‬ ‫ﺍﻟﺭﻱ ﺍﻟﻛﺎﻣﻝ ‪ ٣٫٠٠‬ﺳﻡ ﻓﺎﻥ ﺧﻁﻭﺍﺕ ﺍﻟﺣﻝ ﺗﻛﻭﻥ ﻋﻠﻰ ﺍﻟﻧﺣﻭ ﺍﻟﺗﺎﻟﻲ‪:‬‬ ‫‪ -١‬ﺭﺗﺏ ﻛﻣﻳﺎﺕ ﺍﻟﻣﻳﺎﻩ ﻓﻲ ﺗﺭﺗﻳﺏ ﺗﻧﺎﺯﻟﻰ ‪.‬‬ ‫‪ -٢‬ﺣﺳﺎﺏ ﻧﺳﺑﺔ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﺗﻲ ﺗﻡ ﺃﺧﺫ ﺍﻟﻌﻳﻧﺔ ﻣﻧﻬﺎ ﺇﻟﻰ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﻛﻠﻳﺔ‪.‬‬ ‫‪ -٣‬ﺣﺳﺎﺏ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﻛﻠﻳﺔ ﻟﻛﻝ ﻋﻣﻖ‪.‬‬ ‫‪ -٤‬ﻣﺛﻝ ﺑﻳﺎﻧﻳﺎ ً ﺍﻟﻌﻼﻗﺔ ﺑﻳﻥ ﺍﻟﻣﺳﺎﺣﺔ ﺍﻟﻛﻠﻳﺔ ﻭﻋﻣﻖ ﺍﻟﺭﻱ ‪.‬‬ ‫‪ -٥‬ﺍﻭﺟﺩ ﺍﻟﻛﻔﺎﻳﺔ ﻣﻥ ﺍﻟﺷﻛﻝ‪.‬‬ ‫ﺟﺩﻭﻝ)‪ :(٤-٢‬ﻛﻳﻔﻳﺔ ﺣﺳﺎﺏ ﻭﺗﻘﻳﻳﻡ ﻛﻔﺎﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻱ‬ ‫)‪ (٧ – ٢‬ﻓﺎﻋﻠﻳﺔ ﺍﻟﺭﻱ‪Effectiveness of irrigation:‬‬ ‫ﺇﻥ ﻓﺎﻋﻠﻳﺔ ﺍﻟﺭﻱ ﻋﺑﺎﺭﺓ ﻋﻥ ﻣﺻﻁﻠﺢ ﻳﺻﻑ ﺑﺷﻛﻝ ﻛﻣﻲ ﻛﻝ ﻣﻥ ﻛﻔﺎءﺓ ﺍﻻﺿﺎﻓﺔ‪ ،‬ﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻭﻛﻔﺎﻳﺔ‬ ‫ﻣﻳﺎﻩ ﺍﻟﺭﻱ‪.‬ﺃﻭ ﻫﻰ ﺩﻣﺞ ﻟﻛﻝ ﻣﻥ ﺍﻟﻛﻔﺎءﺓ ﻭﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻭﺍﻟﻛﻔﺎﻳﺔ‪.‬‬ ‫ﻧﻅﻡ ﺍﻟﺭﻱ ﺫﺍﺕ ﻛﻔﺎءﺍﺕ ﺍﻹﺿﺎﻓﺔ ﻭﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﺍﻷﻋﻠﻰ ﻭﺗﻐﻁﻰ ﺇﺣﺗﻳﺎﺟﺎﺕ ﺍﻟﺭﻱ ﺑﻛﻔﺎءﺓ ﻋﺎﻟﻳﺔ ﻻ ﻳﺷﺗﺭﻁ‬ ‫ﺃﻥ ﺗﻛﻭﻥ ﻣﺳﺗﻬﺩﻓﺔ ﻧﻅﺭﺍ ً ﻹﻣﻛﺎﻧﻳﺔ ﻋﺩﻡ ﺍﻟﺣﺻﻭﻝ ﻋﻠﻰ ﺍﻟﻌﺎﺋﺩ ﺍﻻﻗﺗﺻﺎﺩﻱ ﺍﻟﻣﻁﻠﻭﺏ‪.‬ﻭﻳﺟﺏ ﻓﻬﻡ ﺍﻟﻌﻼﻗﺔ ﺑﻳﻥ‬ ‫ﻓﺎﻋﻠﻳﺔ ﺍﻟﺭﻱ ﻭﻛﻔﺎءﺓ ﺍﻟﺗﻁﺑﻳﻖ ﻭﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻭﻛﻔﺎﻳﺔ ﺍﻟﺭﻱ ﻭﺍﻻﺳﺗﺭﺍﺗﻳﺟﻳﺎﺕ ﺍﻟﺗﻲ ﺗﻌﻅﻡ ﺍﻟﻌﺎﺋﺩ ﺍﻻﻗﺗﺻﺎﺩﻱ‪.‬‬ ‫)‪(١-٧-٢‬ﺍﻟﻌﻼﻗﺔ ﺑﻳﻥ ﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻭﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ‪:‬‬ ‫ﺷﻛﻝ )‪ (٢ -٢‬ﻳﻭﺿﺢ ﺍﻟﻌﻼﻗﺔ ﺑﻳﻥ ﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻭﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ‪.‬ﺍﻟﻣﻧﺣﻧﻳﺎﺕ ‪ B ، A‬ﻫﻰ ﻣﻧﺣﻧﻳﺎﺕ ﻟﻠﻧﻅﻡ ‪A‬‬ ‫‪ B ،‬ﺍﻟﻣﺻﻣﻣﺔ ﺑﺣﻳﺙ ﺗﺻﻝ ﺑﺎﻟﺗﺭﺑﺔ ﺇﻟﻰ ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ ﻭﻛﻔﺎﻳﺔ ﺍﻟﺭﻱ ﻟﻬﺎ ﻣﺗﺳﺎﻭﻳﺔ ) ‪.( % ٥٠‬‬ ‫ﺍﻻﻧﺣﻧﺎء ﺍﻟﺑﺳﻳﻁ ﻭﻛﻣﻳﺎﺕ ﺍﻟﻣﻳﺎﻩ ﺍﻻﻗﻝ ﺍﻟﻣﻌﻁﺎﻩ ﺗﺷﻳﺭ ﺇﻟﻰ ﺃﻥ ﺍﻟﻧﻅﺎﻡ ‪ A‬ﻳﻌﻁﻰ ﺍﻟﻣﺎء ﺑﺎﻧﺗﻅﺎﻡ ﺃﻛﺑﺭ ﻣﻥ‬ ‫ﺍﻟﻧﻅﺎﻡ ‪.B‬ﺍﻟﻣﺳﺎﺣﺎﺕ ‪ a1,a2‬ﻫﻰ ﻛﻣﻳﺎﺕ ﺍﻟﻣﻳﺎﻩ ﺍﻟﻔﺎﺋﺿﺔ ﻋﻥ ﺍﻟﺭﻱ ﻭﺍﻻﻗﻝ ﻣﻥ ﺍﻟﻛﻣﻳﺎﺕ ﺍﻟﻣﻌﻁﺎﻩ ﻋﻠﻰ ﺍﻟﺗﺭﺗﻳﺏ‬ ‫‪.‬ﻟﻠﻧﻅﺎﻡ ‪ A‬ﺑﻳﻧﻣﺎ‪ a1+b1, a2+b2‬ﺗﻣﺛﻝ ﻧﻔﺱ ﺍﻟﻛﻣﻳﺎﺕ ﻟﻠﻧﻅﺎﻡ ‪. B‬ﻭﻻﻥ ﺍﻟﻧﻅﺎﻣﻳﻥ ﻣﺻﻣﻣﻳﻥ ﻟﻠﻭﺻﻭﻝ‬ ‫ﺑﺎﻟﺗﺭﺑﺔ ﺇﻟﻰ ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ ﻓﺈﻥ ﺍﻟﺭﻱ ﺍﻟﺯﺍﺋﺩ ﻳﻔﻘﺩ ﺇﻣﺎ ﺑﺎﻟﺗﺳﺭﺏ ﺍﻟﻌﻣﻳﻖ ﺃﻭ ﺍﻟﺟﺭﻳﺎﻥ ﺍﻟﺳﻁﺣﻲ ﻭﻻﻥ ﻫﺫﻩ ﺍﻟﻔﻭﺍﻗﺩ‬ ‫ﺃﻛﺑﺭ ﻓﻲ ﺍﻟﻧﻅﺎﻡ ‪ B‬ﻓﺎﻟﻧﻅﺎﻡ ‪ B‬ﻟﻪ ﺃﻗﻝ ﻛﻔﺎءﺓ ﺇﺿﺎﻓﺔ ﻟﺫﺍ ﻓﺈﻥ ﺗﺻﻣﻳﻡ ﻭﺇﺩﺍﺭﺓ ﻧﻅﻡ ﺍﻟﺭﻱ ﺍﻟﺗﻲ ﺗﺯﻳﺩ ﻣﻥ‬ ‫ﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻳﻣﻛﻥ ﺃﻥ ﺗﺯﻳﺩ ﻣﻥ ﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻧﻅﺎﻡ ﻳﺻﻝ ﺑﺎﻟﺗﺭﺑﺔ ﺍﻟﻰ ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ ﺑﺎﻟﺭﻏﻡ ﻣﻥ ﺃﻥ‬ ‫ﺯﻳﺎﺩﺓ ﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﻟﻳﺱ ﺑﺎﻟﺿﺭﻭﺭﺓ ﺃﻥ ﻳﺯﻳﺩ ﻣﻥ ﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ﺇﺫﺍ ﻛﺎﻧﺕ ﺍﻟﻛﻣﻳﺔ ﺍﻟﻣﻌﻁﺎﻩ ﻟﻠﺗﺭﺑﺔ ﺃﻗﻝ ﻣﻥ ﺗﻠﻙ‬ ‫ﺍﻟﻼﺯﻣﺔ ﻟﻠﻭﺻﻭﻝ ﺑﺎﻟﺗﺭﺑﺔ ﺍﻟﻰ ﺍﻟﺳﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ‪.‬ﻭﺍﻟﻭﺻﻭﻝ ﺇﻟﻰ ﺍﻗﺻﻰ ﻛﻔﺎءﺓ ﻻ ﻳﻌﻧﻰ ﺑﺎﻟﺿﺭﻭﺭﺓ ﺯﻳﺎﺩﺓ ﺻﺎﻓﻰ‬ ‫ﺍﻟﻌﺎﺋﺩ ﻣﻥ ﺍﻟﻣﺯﺭﻋﺔ ﺣﻳﺙ ﺃﻥ ﺗﻛﺎﻟﻳﻑ ﺍﻟﺗﺭﻛﻳﺏ ﻭﺍﻟﺗﺷﻐﻳﻝ ﻣﺭﺗﺑﻁﺔ ﺑﺯﻳﺎﺩﺓ ﺍﻻﻧﺗﻅﺎﻣﻳﺔ‪.‬ﻟﻬﺫﺍ ﻓﺈﻥ ﺍﻟﻔﻭﺍﺋﺩ ﺍﻟﻣﺗﺣﺻﻝ‬ ‫ﻋﻠﻳﻬﺎ ﻣﻥ ﺍﻟﺣﺻﻭﻝ ﻋﻠﻰ ﻛﻔﺎءﺓ ﺇﺿﺎﻓﺔ ﻋﺎﻟﻳﺔ ﻻﺑﺩ ﺃﻥ ﺗﻛﻭﻥ ﻣﺗﻭﺍﺯﻧﺔ ﻣﻊ ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺗﻲ ﺗﺭﺗﺑﻁ ﺑﺎﻟﺣﺻﻭﻝ ﻋﻠﻰ‬ ‫ﺍﻧﺗﻅﺎﻣﻳﺔ ﻋﺎﻟﻳﺔ‪.‬ﻭﻳﻣﻛﻥ ﺍﻟﺣﺻﻭﻝ ﻋﻠﻰ ﺍﻗﺻﻰ ﻋﺎﺋﺩ ﻣﺯﺭﻋﻰ ﺩﻭﻥ ﺍﻟﻭﺻﻭﻝ ﺇﻟﻰ ﺍﻗﺻﻰ ﻗﻳﻣﺔ ﺍﻧﺗﻅﺎﻣﻳﺔ ﻋﻧﺩ‬ ‫ﺍﻧﺧﻔﺎﺽ ﺗﻛﺎﻟﻳﻑ ﺍﻟﺗﺷﻐﻳﻝ ﻭﺍﻟﻁﺎﻗﺔ ﻭﻣﺳﺗﻠﺯﻣﺎﺕ ﺍﻟﺯﺭﺍﻋﺔ ﻛﺎﻟﺳﻣﺎﺩ‪.‬‬ ‫ﺷﻛﻝ)‪ :(٢-٢‬ﻛﻣﻳﺔ ﺍﻟﻣﻳﺎﻩ ﺍﻟﻣﺿﺎﻓﺔ ﻟﻧﻅﺎﻡ ﺭﻯ ﻣﺧﺗﻠﻔﻳﻥ ﻓﻲ ﺍﻧﺗﻅﺎﻡ ﺍﻻﺿﺎﻓﺔ‬ ‫)‪(٢-٧-٣‬ﺍﻟﻌﻼﻗﺔ ﺑﻳﻥ ﻛﻔﺎﻳﺔ ﺍﻟﺭﻱ ﻭﻛﻔﺎءﺓ ﺍﻹﺿﺎﻓﺔ ‪:‬‬ ‫ﻛﻣﺎ ﻫﻭ ﻣﻭﺿـﺢ ﺑﺷـﻛﻝ )‪ (٣ – ٢‬ﻓﺈﻥ ﻛﻔﺎﻳﺔ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﺍﻧﺧﻔﺿـﺕ ﻣﻥ ‪ ٥٢‬ﺇﻟﻰ ‪ % ١٦‬ﺑﻳﻥ ﺍﻟﻣﻧﺣﻧﻳﺎﺕ ‪B ،A‬‬ ‫ﻧﺗﻳﺟﺔ ﺧﻔﺽ ﻛﻣﻳﺔ ﺍﻟﻣﻳﺎﻩ ﺍﻟﻣﺿــﺎﻓﺔ ﻣﻥ ‪ ٣‬ﺇﻟﻰ ‪ ٢٫٥‬ﺳــﻡ ﺑﻳﻧﻣﺎ ﺑﻘﺕ ﺍﻻﻧﺗﻅﺎﻣﻳﺔ ﺛﺎﺑﺗﺔ‪.‬ﺍﻟﻣﺳــﺎﺣﺔ ‪ a + b‬ﻫﻰ‬ ‫ﻛﻣﻳﺔ ﺍﻟﺗﺳــﺭﺏ ﺍﻟﻌﻣﻳﻖ ﻭﺍﻟﺟﺭﻳﺎﻥ ﺍﻟﺳــﻁﺣﻲ ﺍﻟﻧﺎﺗﺞ ﻣﻥ ﺭﻯ ﻛﺎﻣﻝ ﺑﻌﻣﻖ ‪ ٣‬ﺳــﻡ ﺍﻟﺫﻱ ﻳﻣﻸ ﺍﻟﺗﺭﺑﺔ ﻭﻳﺻــﻝ ﺑﻬﺎ‬ ‫ﺇﻟﻰ ﺍﻟﺳـﻌﺔ ﺍﻟﺣﻘﻠﻳﺔ ﺑﻳﻧﻣﺎ ﺍﻟﻣﺳـﺎﺣﺔ ‪ b‬ﻫﻭ ﺍﻟﻔﻘﺩ ﻓﻲ ﺣﺎﻟﺔ ﺍﻟﺭﻱ ‪ ٢٫٥‬ﺳـﻡ ‪.‬ﻋﻠﻰ ﺫﻟﻙ ﻓﺈﻥ ﺍﻧﺧﻔﺎﺽ ﻛﻔﺎﻳﺔ ﺍﻟﺭﻱ‬ ‫ﺃﺩﺕ ﺇﻟﻰ ﺯﻳﺎﺩﺓ ﻛﻔﺎءﺓ ﺍﻹﺿـــﺎﻓﺔ‪.‬ﻭﻛﻠﻣﺎ ﻛﺎﻥ ﻫﻧﺎﻙ ﻓﻘﺩ ﺑﺎﻟﺟﺭﻳﺎﻥ ﺍﻟﺳـــﻁﺣﻲ ﻭﺍﻟﺗﺳـــﺭﺏ ﺍﻟﻌﻣﻳﻖ ﻓﺈﻥ ﻣﺎ ﺳـــﺑﻖ‬ ‫ﺳـﻭﻑ ﻳﻛﻭﻥ ﺻـﺣﻳﺣﺎ ً‪.‬ﺯﻳﺎﺩﺓ ﻛﻔﺎءﺓ ﺍﻹﺿـﺎﻓﺔ ﻋﻥ ﻁﺭﻳﻖ ﺧﻔﺽ ﻛﻔﺎﻳﺔ ﺍﻟﺭﻱ ﺳـﻭﻑ ﻳﺯﻳﺩ ﻣﻥ ﺍﻟﻣﺳـﺎﺣﺔ ﺍﻟﻐﻳﺭ‬ ‫ﻣﺭﻭﻳﺔ ﻣﻣﺎ ﻳﺅﺛﺭ ﺑﺎﻟﺗﺎﻟﻰ ﻋﻠﻰ ﺟﻭﺩﺓ ﻭﺍﻧﺗﺎﺝ ﺍﻟﻣﺣﺻـــﻭﻝ ﺃﻭ ﻛﻼﻫﻣﺎ‪.‬ﻟﻠﻭﺻـــﻭﻝ ﺇﻟﻰ ﺍﻗﺻـــﻰ ﻋﺎﺋﺩ ﻣﺎﺩﻱ ﻣﻥ‬ ‫ﺍﻟﻣﺯﺭﻋﺔ ﻓﺈﻥ ﺫﻟﻙ ﻳﺗﻁﻠﺏ ﺍﺣﺩﺍﺙ ﺗﻭﺍﺯﻥ ﺑﻳﻥ ﺍﻟﻔﻭﺍﺋﺩ ﺍﻟﻧﺎﺗﺟﺔ ﻣﻥ ﻛﻔﺎءﺓ ﺍﻻﺿــﺎﻓﺔ ﺍﻟﻌﺎﻟﻳﺔ ﻭﺍﻟﻔﻭﺍﻗﺩ ﺍﻟﺣﺎﺩﺛﺔ ﻓﻲ‬ ‫ﺍﻟﻣﺣﺻﻭﻝ‪.‬‬ ‫ﺷﻛﻝ)‪ :(٣-٢‬ﺗﻭﺯﻳﻊ ﻣﻳﺎﻩ ﺍﻟﺭﻱ ﻣﻊ ﺍﻋﻣﺎﻕ ﺭﻯ ﻣﺧﺗﻠﻔﺔ ﻭﺍﻧﺗﻅﺎﻣﻳﺔ ﺛﺎﺑﺗﺔ )ﻣﺗﻣﺎﺛﻠﺔ(‬ ‫)‪ ( ٨ – ٢‬ﺣﺳﺎﺏ ﺗﻛﺎﻟﻳﻑ ﻧﻅﺎﻡ ﺍﻟﺭﻱ ‪:Farm irrigation system costs‬‬ ‫ﺟﺯء ﺁﺧﺭ ﻣﻬﻡ ﻣﻥ ﻋﻣﻠﻳﺔ ﺗﺻﻣﻳﻡ ﻧﻅﺎﻡ ﺍﻟﺭﻱ ﻭﻫﻰ ﺣﺳﺎﺏ ﺍﻟﺗﻛﻠﻳﻑ ﺍﻟﺛﺎﻧﻭﻳﺔ ﻻﻣﺗﻼﻙ ﻭﺗﺷﻐﻳﻝ‬ ‫ﺍﻟﺗﺻﻣﻳﻣﺎﺕ ﺍﻟﻣﻁﺭﻭﺣﺔ‪.‬ﻭﻫﺫﻩ ﺍﻟﺑﻳﺎﻧﺎﺕ ﺗﻛﻭﻥ ﻣﻭﺟﻭﺩﺓ ﻓﻲ ﺗﻘﺎﺭﻳﺭ ﺍﻟﻣﺻﻣﻣﻳﻥ ﻭﻳﺳﺗﺧﺩﻣﻬﺎ ﺻﺎﺣﺏ ﺍﻷﺭﺽ‬ ‫ﻟﻣﻌﺭﻓﺔ ﺍﻣﻛﺎﻧﻳﺔ ﺭﻯ ﺍﻻﺽ ﻭﺍﺧﺗﻳﺎﺭ ﺃﻛﺛﺭ ﺍﻟﻧﻅﻡ ﻣﻼﺋﻣﺔ ﻭﻣﻌﺭﻓﺔ ﺍﻟﺗﺭﻛﻳﺏ ﺍﻟﻣﺣﺻﻭﻟﻰ ﻟﻠﻣﺯﺭﻋﺔ‪.‬ﻭﺗﺷﻣﻝ‬ ‫ﺍﻟﺗﻛﺎﻟﻳﻑ ﻛﻝ ﻣﻥ ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺛﺎﺑﺗﺔ ﻭﺍﻟﻣﺗﻐﻳﺭﺓ ﻭﺍﻟﺗﻲ ﺳﺗﺗﺿﺢ ﻁﺭﻳﻘﺔ ﺣﺳﺎﺑﻬﺎ ﻓﻲ ﺍﺟﺯﺍء ﺗﺎﻟﻳﺔ‪.‬‬ ‫)‪ (١-٨ -٢‬ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺛﺎﺑﺗﺔ )ﺗﻛﺎﻟﻳﻑ ﺍﻣﺗﻼﻙ ﺍﻟﻧﻅﺎﻡ(‪: Capital costs‬‬ ‫ﻫﺫﻩ ﺍﻟﺗﻛﺎﻟﻳﻑ ﻳﻁﻠﻖ ﻋﻠﻳﻬﺎ ﻋﺎﺩﺓ ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺛﺎﺑﺗﻪ ﻧﻅﺭﺍ ﻻﺳﺗﻘﻼﻟﻬﺎ ﻋﻥ ﺗﻛﺎﻟﻳﻑ ﺍﺳﺗﺧﺩﺍﻡ ﺍﻟﻧﻅﺎﻡ‪.‬ﺍﻟﺗﻛﺎﻟﻳﻑ‬ ‫ﺍﻟﺛﺎﺑﺗﻪ ﺗﺷﻣﻝ ﺍﻻﺳﺗﻬﻼﻙ ﺍﻟﺳﻧﻭﻯ ﻭﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺧﺎﺻﺔ ﺑﺎﻟﻔﺎﺋﺩﺓ ﻭﺗﻛﺎﻟﻳﻑ ﺍﻟﺗﺄﻣﻳﻥ ﻭﺍﻟﺿﺭﺍﺋﺏ‪.‬‬ ‫)‪ (١-١-٨-٢‬ﺍﻻﺳﺗﻬﻼﻙ ‪:Depreciation‬‬ ‫ﺍﻻﺳﺗﻬﻼﻙ ﻫﻭ ﻋﺑﺎﺭﺓ ﻋﻥ ﺍﻧﺧﻔﺎﺽ ﻗﻳﻣﺔ ﺍﻟﻧﻅﺎﻡ ﻧﺗﻳﺟﺔ ﺗﻘﺎﺩﻣﻪ ﻭﺍﺳﺗﺧﺩﺍﻣﻪ ﻭﺍﻻﺩﻭﺍﺕ ﺍﻟﺗﻲ ﻟﻬﺎ ﻓﺗﺭﺓ‬ ‫ﺍﺳﺗﻐﻼﻝ ﻣﺣﺩﻭﺩﺓ ﻣﺛﻝ ﺣﻖ ﺍﺳﺗﻐﻼﻝ ﺍﻟﻣﺎء ﻭﺍﻻﺭﺽ ﻻ ﺗﺳﺗﻬﻠﻙ‪.‬ﻭﻋﻧﺩ ﺍﺩﺧﺎﻟﻬﺎ ﻓﻲ ﺍﻻﺳﺗﻬﻼﻙ ﻓﺈﻥ ﻗﻳﻣﺗﻬﺎ‬ ‫ﺗﺳﺎﻭﻯ ﺍﻟﻔﺭﻕ ﺑﻳﻥ ﻗﻳﻣﺗﻬﺎ ﺍﻻﺑﺗﺩﺍﺋﻳﺔ ﻭﺍﻟﻧﻬﺎﺋﻳﺔ‪.‬ﻭﺗﻛﻠﻔﺔ ﺍﻷﺩﻭﺍﺕ ﺍﻻﺑﺗﺩﺍﺋﻳﺔ ﺃﻓﺿﻝ ﻣﺻﺩﺭ ﻟﻬﺎ ﻫﻰ ﻗﻳﻣﺗﻬﺎ ﺍﻟﺷﺭﺍﺋﻳﺔ‬ ‫ﺍﻟﺣﻘﻳﻘﻳﺔ ‪.‬ﻭﻓﻰ ﻛﺛﻳﺭ ﻣﻥ ﺍﻻﺣﻭﺍﻝ ﻳﺗﻡ ﺣﺳﺎﺏ ﻫﺫﻩ ﺍﻟﺗﻛﺎﻟﻳﻑ ﻋﻠﻰ ﺍﺳﺎﺱ ﺗﻛﻠﻔﺔ ﻧﻅﻡ ﻣﺻﻣﻣﺔ ﻣﻥ ﻗﺑﻝ ﻣﻊ ﻭﺿﻊ‬ ‫ﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺣﺎﻟﻳﺔ ﻓﻲ ﺍﻻﻋﺗﺑﺎﺭ‪.‬ﻭﺍﻟﻘﻳﻣﺔ ﺍﻟﻧﻬﺎﺋﻳﺔ ﻟﻸﺩﺍﺓ ﻫﻰ ﻗﻳﻣﺗﻬﺎ ﺑﻌﺩ ﻧﻬﺎﻳﺔ ﻓﺗﺭﺓ ﺍﺳﺗﻐﻼﻟﻬﺎ ﻭﻗﺩ ﺗﻛﻭﻥ ﻫﺫﻩ‬ ‫ﺍﻟﻘﻳﻣﺔ ﻣﻭﺟﺑﺔ ﺃﻭﺳﺎﻟﺑﺔ ﺃﻭ ﺗﺳﺎﻭﻯ ﺻﻔﺭ‪.‬ﻭﻫﺫﻩ ﺍﻟﻘﻳﻣﺔ ﺗﻛﻭﻥ ﺳﺎﻟﺑﺔ ﻋﻧﺩﻣﺎ ﻳﻠﺯﻡ ﻣﺑﻠﻎ ﻣﻥ ﺍﻟﻣﺎﻝ ﻻﻧﻬﺎء ﺍﺳﺗﺧﺩﺍﻡ‬ ‫ﺍﻻﺩﺍﺓ‪.‬ﺟﺩﻭﻝ)‪ (٥ – ٢‬ﻳﻭﺿﺢ ﺍﻟﻌﻣﺭ ﺍﻻﻓﺗﺭﺍﺿﻰ ﻟﻠﻌﺩﻳﺩ ﻣﻥ ﺍﻷﺩﻭﺍﺕ ﻭﻣﻛﻭﻧﺎﺕ ﻧﻅﻡ ﺍﻟﺭﻱ ﺣﻳﺙ ﺃﻥ ﺍﻟﻌﻣﺭ‬ ‫ﺍﻻﻓﺗﺭﺍﺿﻰ ﻳﺧﺗﻠﻑ ﻁﺑﻘﺎ ﻻﻣﻛﺎﻧﻳﺔ ﺍﻟﺗﺷﻐﻳﻝ ﻭﺍﻟﺻﻳﺎﻧﺔ‪.‬ﻭﺍﻟﺗﻛﺎﻟﻳﻑ ﺍﻟﺑﺳﻳﻁﺔ ﻣﺭﺗﺑﻁﺔ ﺑﺎﻟﻭﺣﺩﺍﺕ ﺍﻟﺻﻐﻳﺭﺓ ﺫﺍﺕ‬ ‫ﺍﻟﺗﺷﻐﻳﻝ ﺍﻟﻌﺎﺩﻯ ﻭﺍﻟﺻﻳﺎﻧﻪ ﺍﻟﺑﺳﻳﻁﺔ ﻭﺍﻟﻘﻳﻡ ﺍﻟﻌﺎﻟﻳﺔ ﻟﻼﺟﺯﺍء ﺫﺍﺕ ﺍﻟﺗﻘﻧﻳﺔ ﺍﻟﻌﺎﻟﻳﺔ ﻭﺍﻟﺗﻰ ﺗﺣﺗﺎﺝ ﻟﺩﻗﺔ ﻓﻲ ﺗﺭﻛﻳﺑﻬﺎ‬ ‫ﻭﺻﻳﺎﻧﺗﻬﺎ‪.‬‬ ‫ﺟﺩﻭﻝ )‪ :(٥-٢‬ﺍﻟﻌﻣﺭ ﺍﻻﻓﺗﺭﺍﺿﻲ ﻟﻣﻛﻭﻧﺎﺕ ﺷﺑﻛﺎﺕ ﺍﻟﺭﻱ‬ ‫ﺍﻟﻌﻣﺭ ﺍﻻﻓﺗﺭﺍﺿﻲ ﺑﺎﻟﺳﻧﻭﺍﺕ‬ ‫ﺍﻟﻣﻛﻭﻥ‬ ‫ﺍﻵﺑﺎﺭ‬ ‫‪٥‬‬ ‫ﻏﻳﺭﻣﺑﻁﻧﺔ ﻣﺣﻔﻭﺭﺓ ﻳﺩﻭﻳﺎ ً‬ ‫‪١٠‬‬ ‫ﻣﺑﻁﻧﺔ ﻣﺣﻔﻭﺭﺓ ﻳﺩﻭﻳﺎ ً‬ ‫‪١٥‬‬ ‫ﺳﺣﺏ ﻣﻥ ﻣﻭﺍﺳﻳﺭ‬ ‫ﺍﻟﻣﺿﺧﺎﺕ‬ ‫‪٧- ٣‬‬ ‫ﻳﺩﻭﻱ‬ ‫‪١٠‬‬ ‫ﺩﻳﺯﻝ‬ ‫‪٦- ٤‬‬ ‫ﺑﻧﺯﻳﻥ‬ ‫‪١٥-١٠‬‬ ‫ﻛﻬﺭﺑﺎء‬ ‫‪١٠-٥‬‬ ‫ﺭﺷﺎﺷﺎﺕ‬ ‫‪١٠-٥‬‬ ‫ﻣﻧﻘﻁﺎﺕ‬ ‫‪٥- ٣‬‬ ‫ﻋﺑﻭﺍﺕ ﺟﻣﻊ ﺍﻟﻣﻳﺎﻩ‬ ‫‪١٠‬‬ ‫ﻗﻧﻭﺍﺕ ﻣﺑﻁﻧﺔ‬ ‫‪١٥-١٠‬‬ ‫ﻣﻧﺷﺂﺕ ﻫﻳﺩﺭﻭﻟﻳﻛﻳﺔ‬ ‫ﻭﻳﺗﻡ ﺣﺳﺎﺏ ﻗﻳﻣﺔ ﺍﻻﺳﺗﻬﻼﻙ ﺍﻟﺳﻧﻭﻱ ﺑﻣﺟﻣﻭﻋﺔ ﻣﻥ ﺍﻟﻁﺭﻕ ﻧﺫﻛﺭ ﻣﻧﻬﺎ‪:‬‬ ‫ﻁﺭﻳﻘﺔ ﺍﻟﺧﻁ ﺍﻟﻣﺳﺗﻘﻳﻡ‪:‬‬ ‫ﻭﻫﻰ ﺃﺑﺳﻁ ﺍﻟﻁﺭﻕ ﻭﻓﻳﻬﺎ ﺗﻘﻝ ﻗﻳﻣﺔ ﺍﻵﻟﺔ ﺑﻣﻘﺎﺩﻳﺭ ﺛﺎﺑﺗﺔ ﻛﻝ ﻋﺎﻡ ﺧﻼﻝ ﻣﺩﺓ ﺍﻟﺗﺷﻐﻳﻝ‪ ،‬ﻭﻳﺣﺳﺏ ﺍﻻﺳﺗﻬﻼﻙ‬ ‫ﺍﻟﺳﻧﻭﻱ ﻣﻥ ﺍﻟﻣﻌﺎﺩﻟﺔ‪:-‬‬ ‫‪new cost- scrap value‬‬ ‫=‪Annual depreciation‬‬ ‫)‪..........(2-12‬‬ ‫‪Useful life in years‬‬ ‫ﻁﺭﻳﻘﺔ ﺍﻟﻧﺳﺑﺔ ﺍﻟﻣﺋﻭﻳﺔ ﺍﻟﺛﺎﺑﺗﺔ‪:‬‬ ‫ﻓﻲ ﻫﺫﻩ ﺍﻟﻁﺭﻳﻘﺔ ﺗﺳﺗﻬﻠﻙ ﺍﻵﻟﺔ ﺑﻧﺳﺑﺔ ﻣﺋﻭﻳﺔ ﺛﺎﺑﺗﺔ ﻣﻥ ﻗﻳﻣﺗﻬﺎ ﻭﻳﺗﻡ ﺗﻘﺩﻳﺭ ﻧﺳﺑﺔ ﺍﻻﺳﺗﻬﻼﻙ ﻓﻲ ﻫﺫﻩ ﺍﻟﻁﺭﻳﻘﺔ‬ ‫ﻛﻣﺎ ﻳﻠﻲ‪:‬‬ ‫‪scrap value‬‬ ‫‪depreciation ratio= 1- n‬‬ ‫)‪...........(2-13‬‬ ‫‪new cost‬‬ ‫ﺣﻳﺙ ‪ n‬ﻫﻰ ﻋﻣﺭ ﺍﻵﻟﺔ ﻓﻠﻭ ﻛﺎﻧﺕ ﻗﻳﻣﺔ ﺍﻵﻟﺔ ﻋﻧﺩ ﺍﻟﺷﺭﺍء ‪ ٤٠٠٠٠‬ﺟﻧﻳﻪ ﻣﺛﻼً ﻭﻧﺳﺑﺔ ﺍﻻﺳﺗﻬﻼﻙ ‪٪١٠‬‬ ‫ﻓﻳﻛﻭﻥ‪-:‬‬ ‫ﺍﻻﺳﺗﻬﻼﻙ ﻓﻲ ﺍﻟﺳﻧﺔ ﺍﻷﻭﻟﻰ= ‪ ٤٠٠٠ =(٠٫١)٤٠٠٠٠‬ﺟﻧﻳﻪ‬ ‫ﺍﻻﺳﺗﻬﻼﻙ ﻓﻲ ﺍﻟﺳﻧﺔ ﺍﻟﺛﺎﻧﻳﺔ= ‪ ٣٦٠٠ =(٠٫١)٣٦٠٠٠‬ﺟﻧﻳﻪ‬ ‫ﻭﺗﺣﺳﺏ ﻗﻳﻣﺔ ﺍﻻﺳﺗﻬﻼﻙ ﻓﻲ ﺃﻯ ﺳﻧﺔ ﻛﻣﺎ ﺑﺎﻟﻣﻌﺎﺩﻟﺔ )‪ (١٤-٣‬ﻭﺗﺳﺎﻭﻱ‬ ‫)‪new cost(1- depreciation ratio)y........(2-14‬‬ ‫ﺣﻳﺙ ‪ y‬ﻫﻰ ﺍﻟﺳﻧﺔ ﺍﻟﺗﻲ ﻳﺣﺳﺏ ﻋﻧﺩﻫﺎ ﺍﻻﺳﺗﻬﻼﻙ‪.‬ﻭﺗﻌﺑﺭ ﻫﺫﻩ ﺍﻟﻁﺭﻳﻘﺔ ﺑﺷﻛﻝ ﺃﻛﺛﺭ ﺩﻗﺔ ﻋﻥ ﺍﺳﺗﻬﻼﻙ‬ ‫ﺍﻵﻟﺔ‪.‬‬ ‫ﺝ‪ -‬ﻁﺭﻳﻘﺔ ﻣﺟﻣﻭﻉ ﺃﺭﻗﺎﻡ ﺍﻟﺳﻧﻳﻥ‪ :‬ﺗﻌﺗﺑﺭ ﻣﻥ ﺍﻟﻁﺭﻕ ﺍﻟﺩﻗﻳﻘﺔ ﻟﺣﺳﺎﺏ ﺍﻻﺳﺗﻬﻼﻙ ﺍﻟﺳﻧﻭﻱ ﻣﻘﺎﺭﻧﺔ ﺑﻁﺭﻳﻘﺔ ﺍﻟﺧﻁ‬ ‫ﺍﻟﻣﺳﺗﻘﻳﻡ ﻭﻓﻳﻬﺎ ﻳﺗﻡ ﺗﻘﺩﻳﺭ ﺍﻟﻣﺑﻠﻎ ﺍﻟﻣﺳﺗﻬﻠﻙ ﻣﻥ ﺛﻣﻥ ﺍﻵﻟﺔ ﺑﻁﺭﺡ ﺛﻣﻥ ﺍﻵﻟﺔ ﻋﻧﺩ ﺍﻟﺷﺭﺍء ﻣﻥ ﺛﻣﻥ ﺍﻵﻟﺔ ﻋﻧﺩ ﻧﻬﺎﻳﺔ‬ ‫ﻋﻣﺭﻫﺎ ﻭﺍﻟﻔﺭﻕ ﻳﻛﻭﻥ ﻫﻭ ﺍﻟﻣﺑﻠﻎ ﺍﻟﺫﻱ ﺳﻭﻑ ﻳﺳﺗﻬﻠﻙ ﻧﺗﻳﺟﺔ ﺍﻟﺗﺷﻐﻳﻝ ﻭﻳﻘﺳﻡ ﻫﺫﺍ ﺍﻟﻣﺑﻠﻎ ﻋﻠﻰ ﺳﻧﻭﺍﺕ ﺍﻻﺳﺗﻬﻼﻙ‪.‬‬ ‫ﻓﻣﺛﻼً ﺍﺫﺍ ﻛﺎﻥ ﺛﻣﻥ ﺍﻵﻟﺔ ﻋﻧﺩ ﺍﻟﺷﺭﺍء ‪ ١٤٠٠٠‬ﺟﻧﻳﻪ ﻭﺛﻣﻧﻬﺎ ﻋﻧﺩ ﺍﻟﺑﻳﻊ ‪ ٢٠٠٠‬ﺟﻧﻳﻪ ﺑﻌﻣﺭ ﺍﻓﺗﺭﺍﺿﻲ ﺧﻣﺱ‬ ‫ﺳﻧﻭﺍﺕ ﻓﻳﻣﻛﻥ ﺗﻘﻳﺭ ﺍﻻﺳﺗﻬﻼﻙ ﻛﻣﺎ ﻳﻠﻲ‪-:‬‬ ‫ﻣﺟﻣﻭﻉ ﺃﺭﻗﺎﻡ ﺍﻟﺳﻧﻳﻥ= ‪ ١٥=١+٢+٣+٤+٥‬ﻋﺎﻡ‬ ‫ﺍﺳﺗﻬﻼﻙ ﺍﻟﺳﻧﺔ ﺍﻷﻭﻟﻰ=)‪ ٤٠٠٠ =١٥/٥*(٢٠٠٠-١٤٠٠٠‬

Use Quizgecko on...
Browser
Browser