Geometry of Circles Chapter 21 Review Set Solutions PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains solutions to geometry problems related to circles. The problems involve calculating angles and lengths in various circle configurations.
Full Transcript
## REVIEW SET 21 ### 1 #### a - **BOC** = 2 × **BAC** {angle at the centre} - **BOC** = 2 × 36° = 72° - **OB** = **OC** {radii} - **AOB** is isosceles. - **OBC** = **OCB** = a° {base angles of isosceles triangle} - a + a + 72 = 180 {angles in a triangle} - 2a + 72 = 180 - 2a = 108 - a = 54 #### b -...
## REVIEW SET 21 ### 1 #### a - **BOC** = 2 × **BAC** {angle at the centre} - **BOC** = 2 × 36° = 72° - **OB** = **OC** {radii} - **AOB** is isosceles. - **OBC** = **OCB** = a° {base angles of isosceles triangle} - a + a + 72 = 180 {angles in a triangle} - 2a + 72 = 180 - 2a = 108 - a = 54 #### b - **ABC** = 90° {angle in a semi-circle} - 28 + 90 + a = 180 {angles in a triangle} - a + 118 = 180 - a = 62 ### 2 - **ACD** = **ABD** = 41° {angles on same arc} - 41 + a = 102 {exterior angle of AECD} - a = 61 - **CBD** = β {angle between a tangent and a chord} - **BCD** = α - α + β + γ = 180° {angles in a triangle} ### 3 #### a - **ABC** = 90° {angle in a semi-circle} - x + (x + 14) + 90 = 180 {angles in a triangle} - 2x + 104 = 180 - 2x = 76 - x = 38 #### b - **AOC** + 240° = 360° {angles at a point} - **AOC** = 120° - **ABC** = **AOC** {angle at the centre} - **ABC** = 1/2 × 120° - = 60° - x = 80 + 60 {exterior angle of a triangle} - x = 140 #### c - **CBA** = **CAT** = 38° {angle between a tangent and a chord} - **CB** = **CA** {given} - **AABC** is isosceles. - **CAB** = **CBA** = 38° {base angles of isosceles triangle} - x + 38 + 38 = 180 {angles in a triangle} - x+76= 180 - x = 104 ### 4 - **AM** = **CM** {tangents from an external point} - **CM** = **BM** - **AM** = **BM** - M is the midpoint of [AB]. #### b - **MAC** = α and **MBC** = β {see above} - **AM** = **CM**, ΔAMC is isosceles. - **ACM** = **CAM** = α {base angles of isosceles triangle} - **CM** = **BM**, ΔBMC is isosceles. - **MCB** = **CBM** = β {base angles of isosceles triangle} - In ΔABC, α + β + β + α = 180° {angles in a triangle} - 2α + 2β = 180° - α + β = 90° - **ACB** = α + β - **ACB** = 90° ### 5 - Construct [XB] and [PB]. - Draw the tangent to the circle at X. - **BXS** = **XAB** {angle between a tangent and a chord} - **PAX** = **PBX** (angles subtended by the same arc) - **XAB** = **PAX** {given} - **PBX** = **BXS** - These are alternate angles between [PB] and [RXS]. - The tangent at X is parallel to [PB]. - Join [BC]. - **AOB** = α - **AOB** = 2 × **ACB** {angle at the centre} - **ACB** = α / 2 - **DOC** = β - **DOC** = 2 × **DBC** {angle at the centre} - **DBC** = β / 2 - In ABEC, α/2 + β/2 + 90 = 180 {angles in a triangle, BEC = 90° angles on a line} - α/2 + β/2 = 90 - α + β = 180 ### 6 - We construct [BQ]. - Let **QAC** be α - **PAB** = α {AP bisects CAB} - Let **ACB** = β - **AQB** β {angles on same arc} - In AAPC, **APC** + α + β = 180° {angles in a triangle} - **APC** = 180° - α - β - In AABQ, **ABQ** + α + β = 180° {angles in a triangle} - **ABQ** = 180° - α - β - **APC** = **ABQ** ## PRACTICE TEST 21B ### 1 #### a - **DBC** = **DAC** = x° {angles on the same arc} - 56 + x = 142 {exterior angle of a △} - x = 86 #### b - We construct [OB]. - M bisects [BC] {chord of a circle} - **BM** = 5 cm - **OB** = **OA** = x {radii} - 3² + 5² = x² {Pythagoras} - x² = 34 - x = √34 {as x > 0} - x ≈ 5.83 ### 2 - We construct [OA]. - **OA** = **OB** = 8 cm {radii} - **OAC** = 90° {radius-tangent theorem} - OA² + AC² = OC² {Pythagoras} - 8² + 15² = (x + 8)² - 64 + 225 = x² + 16x + 64 - x² + 16x - 225 = 0 - (x - 9)(x + 25) = 0 - x = 9 {as x > 0} #### a - **obtuse BOD** = 2 × **BAD** {angle at the centre} - = 2α° #### b - **reflex BOD** = 2 × **BCD** {angle at the centre} - = 2β° - **obtuse BOD** + **reflex BOD** = 360° {angles at a point} - 2α + 2β = 360 - 2(α + β) = 360 - α + β = 180 #### c - **AOC** + 250° = 360° {angles at a point} - **AOC** = 110° - **ABC** = **AOC** {angle at the centre} - x = 1/2 × 110 - x = 55 ### 3 #### a - **OCT** = 90° {radius-tangent theorem} - **COT** = 70° {angles in △COT} - **OA** = **OC** {radii} - **AOAC** is isosceles. - **OCA** = **OAC** = x° {base angles of isosceles triangle} - x + x + 70 = 180 {angles in △AOC} - 2x + 70 = 180 - 2x = 110 - x = 55 #### b - Join [OT]. - In ΔΑΟΒ, **ABO** + 52° + 90° = 180° {angles in a triangle} - **ABO** = 38° - In AOTB, **OTB** = 90° {radius-tangent} - **TB** = 6 / tan 38° - **TB** ≈ 7.68 cm - **TB** = **BS** {tangents from an external point} - x ≈ 7.68 ### 4 - In ∆ABC, x + 16 + 2x + 20 + x = 180 {angles in a triangle} - 4x + 36 = 180 - 4x = 144 - x = 36 - x + 16 = 52 and 2x + 20 = 92 - In △DEF, y - 22 + y + 34 + y = 180 {angles in a triangle} - 3y + 12 = 180 - 3y = 168 - y = 56 - y - 22 = 34 and y + 34 = 90 - As **FED** = 90°, FD is a diameter of the circle {angle in a semi-circle} - sin 56° = 5.5 / FD - **FD** = 5.5 / sin 56° - **FD** ≈ 6.63 m - The diameter of the circle is approximately 6.63 m. ### 5 - **OD** = **OB** {radii} - ΔODB is isosceles. - **OBD** = **ODB** = α {base angles of isosceles triangle} - **ACD** = **ABD** = α {angles on same arc} - But **BDO** = α {given} - **BDO** = **ACD** - **ABD** = **ACD** = α - **BAX** = **CAD** {angles subtended by the same arc} - **ABX** and **ACD** each have an angle marked α and an angle marked with a - The third angles of these triangles must be equal - **AXB** = **ADC**