Geometry Midterm Review PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document is a geometry midterm review with questions and examples. It covers various topics such as vocabulary, theorems, and constructions in geometry.
Full Transcript
†ath‬â€8Y‬â€-‬â€Honors‬â€Geometry‬â€Midterm‬â€Review‬â€by‬â€Unit‬ M †his‬â€is‬â€a‬â€summary,‬â€it‬â€is‬â€NOT‬â€EVERYTHING!‬ T â€Unit‬â€1:‬ â€Geometry‬â€Vocabulary‬â€&‬â€Introduction‬ â€Vocabulary‬â€words‬â€to‬â€know‬â€:‬ â€Nets,‬â€point,‬â€line,‬â€plane,‬â€collinear,‬â€noncollinear,‬ â€coplanar,...
†ath‬â€8Y‬â€-‬â€Honors‬â€Geometry‬â€Midterm‬â€Review‬â€by‬â€Unit‬ M †his‬â€is‬â€a‬â€summary,‬â€it‬â€is‬â€NOT‬â€EVERYTHING!‬ T â€Unit‬â€1:‬ â€Geometry‬â€Vocabulary‬â€&‬â€Introduction‬ â€Vocabulary‬â€words‬â€to‬â€know‬â€:‬ â€Nets,‬â€point,‬â€line,‬â€plane,‬â€collinear,‬â€noncollinear,‬ â€coplanar,‬â€segment,‬â€ray,‬â€parallel,‬â€skew,‬â€parallel‬â€planes,‬â€congruent,‬â€angles,‬â€opposite‬â€rays,‬ â€angle‬â€bisector,‬â€complementary‬â€angles,‬â€supplementary‬â€angles,‬â€linear‬â€pair,‬â€perpendicular‬ â€lines,‬â€perpendicular‬â€bisector,‬ â€vertical‬â€angles‬ â€Theorems:‬ â€â€¬ â€Segment‬â€addition‬ â€â€¬ â€Segment‬â€Subtraction‬ â€â€¬ â€Distance‬â€Formula‬ â€â€¬ â€Midpoint‬â€formula‬ â€â€¬ â€Vertical‬â€Angles‬ â€Constructions:‬ â€â€¬ â€Copy‬â€segment‬ â€â€¬ â€Copy‬â€angle‬ â€â€¬ â€Angle‬â€bisector‬ â€â€¬ â€Perpendicular‬â€bisector‬ â€Sample‬â€Problems:‬ â€1.‬ â€If‬â€ML‬â€is‬â€68‬â€units‬â€find‬â€,x,‬â€MV‬â€and‬â€VL.‬ â€MV‬â€=‬â€3x‬â€-‬â€10,‬â€and‬â€VL‬â€=‬â€5x‬â€+40‬ â€2.‬ â€3.‬ â€The‬â€coordinates‬â€of‬â€the‬â€midpoint‬â€of‬â€AB‬â€are‬â€(5,6).‬â€The‬â€coordinates‬â€of‬â€A‬â€are‬â€(1,‬â€âˆ’6).‬ â€Find‬â€the‬â€coordinates‬â€of‬â€B.‬ â€4.‬ â€Two‬â€supplementary‬â€angles‬â€are‬â€in‬â€the‬â€ratio‬â€of‬â€4:5.‬â€Find‬â€the‬â€measure‬â€of‬â€each‬â€angle.‬ â€5.‬ â€6.‬ â€Construct‬â€a‬â€right‬â€triangle,‬â€with‬â€the‬â€hypotenuse‬â€congruent‬â€to‬â€AB‬â€below.‬ â€Unit‬â€2:‬â€Reasoning‬â€&‬â€Proof‬ †ocabulary‬â€words‬â€to‬â€know‬â€:‬ â€deductive‬â€reasoning,‬â€postulates,‬â€axioms,‬â€theorem‬ V â€Theorems/Postulates:‬ â€â€¬ â€Reflexive‬ â€â€¬ â€Substitution‬ â€â€¬ â€Transitive‬ â€â€¬ â€Addition‬ â€â€¬ â€Subtraction‬ â€â€¬ â€Halves‬â€of‬â€Equal‬â€quantities‬â€are‬â€equal‬ â€â€¬ â€All‬â€right‬â€angles‬â€are‬â€congruent‬ â€â€¬ â€Supplements‬â€of‬â€the‬â€same‬â€(congruent‬â€angles)‬â€are‬â€congruent‬ â€â€¬ â€Linear‬â€pairs‬â€ar‬â€supplementary‬ â€â€¬ â€Complements‬â€of‬â€the‬â€same(congruent‬â€angles)‬â€are‬â€congruent‬ â€â€¬ â€Vertical‬â€Angles‬â€are‬â€congruent‬ â€â€¬ â€Constructions:‬ â€Sample‬â€Problems:‬ â€Unit‬â€3:‬ â€Parallel‬â€&‬â€Perpendicular‬â€Lines‬ â€Vocabulary:‬ â€transversal,‬â€alternate‬â€interior‬â€angles,‬â€alternate‬â€exterior‬â€angles,‬ â€corresponding‬â€sides,‬â€same‬â€side‬â€interior‬â€angles,‬â€same‬â€side‬â€exterior‬â€angles,‬â€auxiliary‬â€line,‬ â€slope‬ â€Theorems‬â€&‬â€Postulates:‬ ⇔ â€â€¬ â€Alternate‬â€interior‬â€are‬â€congruent‬†‬â€||‬â€lines‬ ⇔ â€â€¬ â€Alternate‬â€exterior‬â€angles‬â€are‬â€congruent‬†‬â€||‬â€lines‬ â€â€¬ ⇔ †orresponding‬â€angles‬â€are‬â€congruent‬†‬â€||‬â€lines‬ C â€â€¬ ⇔ â€Same‬â€side‬â€interior‬â€angles‬â€are‬â€supplementary‬†‬â€||‬â€lines‬ â€â€¬ ⇔ â€Same‬â€side‬â€exterior‬â€angles‬â€are‬â€supplementary‬†‬â€||‬â€lines‬ â€â€¬ â€In‬â€a‬â€plane‬â€two‬â€lines‬â€||‬â€to‬â€the‬â€same‬â€line‬â€are‬â€||‬ â€â€¬ â€If‬â€two‬â€coplanar‬â€lines‬â€are‬â€perpendicular‬â€to‬â€the‬â€same‬â€line,‬â€they‬â€are‬â€||.‬ â€â€¬ â€If‬â€two‬â€lines‬â€are‬â€||‬â€they‬â€have‬â€the‬â€same‬â€slope.‬ â€â€¬ â€If‬â€two‬â€lines‬â€are‬â€vertical‬â€on‬â€a‬â€coordinate‬â€plane‬â€they‬â€are‬â€||.‬ â€â€¬ â€If‬â€two‬â€lines‬â€are‬â€perpendicular‬â€then‬â€the‬â€product‬â€of‬â€their‬â€slopes‬â€is‬â€-1.‬ â€â€¬ â€A‬â€horizontal‬â€line‬â€and‬â€a‬â€vertical‬â€line‬â€on‬â€a‬â€coordinate‬â€plane‬â€are‬â€perpendicular.‬ â€Constructions:‬ â€â€¬ â€Parallel‬ â€â€¬ â€Parallel‬â€through‬â€a‬â€point‬ â€â€¬ â€Perpendicular‬ â€â€¬ â€Perpendicular‬â€to‬â€a‬â€point‬â€on‬â€and‬â€off‬â€the‬â€line‬ â€Sample‬â€Problems:‬ â€11.‬ â€12.‬ â€Unit‬â€4‬â€Congruent‬â€Triangles:‬ â€Vocabulary:‬â€scalene,‬â€isosceles,‬â€equilateral,‬â€acute,‬â€right,‬â€obtuse,‬â€interior,‬â€exterior,‬ â€remote‬â€interior‬â€angle,‬â€included‬â€side,‬â€included‬â€angle,‬â€vertex‬â€angle,‬â€base‬â€angle,‬â€legs,‬ â€Theorems:‬ â€â€¬ â€Sum‬â€of‬â€the‬â€interior‬â€angles‬â€of‬â€a‬â€triangle‬â€is‬â€180.‬ â€â€¬ â€The‬â€measure‬â€of‬â€an‬â€exterior‬â€angle‬â€of‬â€a‬â€triangle‬â€is‬â€the‬â€sum‬â€of‬â€the‬ â€remote‬â€interior‬â€angles.‬ â€â€¬ â€If‬â€two‬â€angles‬â€of‬â€a‬â€triangle‬â€are‬â€congruent‬â€to‬ â€two‬â€angles‬â€of‬â€another‬ â€triangle,‬â€the‬â€third‬â€angles‬â€are‬â€congruent.‬ â€â€¬ â€SSS,‬â€SAS,‬â€ASA,‬â€AAS,‬â€HL‬ â€â€¬ â€In‬â€a‬â€triangle‬â€sides‬â€opposite‬â€congruent‬â€angles‬â€are‬â€congruent.‬ â€â€¬ â€In‬â€a‬â€triangle,‬â€angles‬â€opposite‬â€congruent‬â€sides‬â€are‬â€congruent.‬ â€Sample‬â€Problems:‬ â€Unit‬â€5:‬â€Relationships‬â€in‬â€Triangles‬ â€Vocabulary:‬â€concurrent,‬â€point‬â€of‬â€concurrency,‬â€circumscribed,‬â€inscribed,‬ â€circumcenter,‬â€incenter,‬â€median,‬â€centroid,‬â€altitude,‬â€orthocenter,‬â€partition,‬ â€directed‬â€segment,‬â€indirect‬â€proof‬ â€Theorems:‬ â€â€¬ â€The‬â€perpendicular‬â€bisectors‬â€of‬â€the‬â€sides‬â€of‬â€the‬â€triangle‬â€are‬ â€concurrent‬â€at‬â€a‬â€point‬â€equidistant‬â€from‬â€the‬â€vertices.‬ â€(Circumcenter)‬ â€â€¬ â€The‬â€bisectors‬â€of‬â€the‬â€angles‬â€of‬â€a‬â€triangle‬â€are‬â€concurrent‬â€at‬â€a‬ â€point‬â€equidistant‬â€from‬â€the‬â€sides‬â€of‬â€the‬â€triangle.‬â€(Incenter)‬ â€â€¬ T †he‬â€point‬â€of‬â€concurrency‬â€of‬â€the‬â€median‬â€of‬â€a‬â€triangle‬â€is‬â€the‬ â€centroid‬â€which‬â€is‬â€â…”‬â€the‬â€distance‬â€from‬â€the‬â€vertex‬â€on‬â€the‬â€median.‬ â€â€¬ â€The‬â€point‬â€of‬â€concurrency‬â€of‬â€the‬â€altitudes‬â€of‬â€the‬â€triangle‬â€is‬â€the‬ â€orthocenter.‬ â€â€¬ â€Theorem:‬â€an‬â€exterior‬â€angle‬â€of‬â€a‬â€âˆ†â€¬â€is‬â€greater‬â€than‬â€either‬â€of‬â€its‬ â€non-adjacent‬â€(remote)‬â€interior‬â€angles.‬ â€â€¬ â€In‬â€a‬â€triangle,‬â€the‬â€longest‬â€side‬â€is‬â€opposite‬â€the‬â€largest‬â€angle,‬â€the‬ â€smallest‬â€side‬â€opposite‬â€the‬â€smallest‬â€angle.‬ â€â€¬ â€In‬â€a‬â€triangle‬â€the‬â€sum‬â€of‬â€two‬â€sides‬â€is‬â€greater‬â€than‬â€the‬â€length‬â€of‬ â€the‬â€third‬â€side.‬ â€â€¬ â€Constructions:‬ â€â€¬ â€Perpendicular‬â€bisector‬ â€â€¬ â€Circumcenter‬ â€â€¬ â€Incenter‬ â€â€¬ â€Angle‬â€bisector‬ â€â€¬ â€Median‬ â€â€¬ â€Centroid‬ â€â€¬ â€Altitude‬ â€â€¬ â€Orthocenter‬ â€â€¬ R †eview‬â€the‬â€partition‬â€process‬ â€â€¬ â€Review‬â€Indirect‬â€Proofs‬ â€Sample‬â€Problems:‬ â€7‬ â€8‬ â€9.‬ â€10‬ â€11‬ â€12‬ â€Unit‬â€6‬â€Quadrilaterals:‬ â€Vocabulary:‬â€regular‬â€polygon,‬â€quadrilateral,‬â€kite,‬â€trapezoid,‬â€parallelogram,‬ â€rhombus,‬â€rectangle,‬â€square‬ â€Theorems;‬ â€â€¬ â€The‬â€sum‬â€of‬â€the‬â€angles‬â€of‬â€any‬â€polygon‬â€are‬â€(n-2)‬â€180.‬ â€â€¬ â€The‬â€sum‬â€of‬â€the‬â€exterior‬â€angles‬â€of‬â€a‬â€polygon‬â€is‬â€360.‬ â€â€¬ â€Parts‬â€and‬â€extensions‬â€of‬â€parallel‬â€lines‬â€are‬â€parallel‬ â€â€¬ â€If‬â€a‬â€parallelogram‬â€has‬â€one‬â€right‬â€angle‬â€then‬â€it‬â€has‬â€4‬â€right‬â€angles.‬ â€Properties‬â€of:‬ â€Parallelogram:‬ â€â€¬ â€2‬â€pair‬â€of‬â€parallel‬â€sides.‬ â€â€¬ â€2‬â€pair‬â€congruent‬â€sides.‬ â€â€¬ â€Opposite‬â€angles‬â€are‬â€congruent.‬ â€â€¬ â€Diagonals‬â€bisect‬â€each‬â€other.‬ â€â€¬ â€Consecutive‬â€angles‬â€are‬â€supplementary.‬ â€Rectangle:‬ â€â€¬ â€ALL‬â€PROPERTIES‬â€OF‬â€A‬â€PARALLELOGRAM‬ â€â€¬ â€All‬â€right‬â€angles.‬ â€â€¬ â€Diagonals‬â€are‬â€congruent.‬ â€Rhombus:‬ â€â€¬ â€ALL‬â€PROPERTIES‬â€OF‬â€A‬â€PARALLELOGRAM‬ â€â€¬ â€All‬â€sides‬â€are‬â€congruent.‬ â€â€¬ â€Diagonals‬â€are‬â€perpendicular‬ â€â€¬ â€Diagonals‬â€bisect‬â€the‬â€angles‬ â€Square:‬ â€â€¬ â€All‬â€properties‬â€of‬â€a‬â€rectangle.‬ â€â€¬ â€All‬â€properties‬â€of‬â€a‬â€rhombus‬ â€Kites-‬â€it‬â€is‬â€not‬â€a‬â€parallelogram‬ â€â€¬ â€Two‬â€pairs‬â€of‬â€adjacent‬â€congruent‬â€sides.‬ â€â€¬ â€The‬â€diagonals‬â€are‬â€perpendicular.‬ â€â€¬ â€The‬â€main‬â€(longer)‬â€diagonal‬â€bisects‬â€the‬â€other.‬ â€â€¬ â€The‬â€angles‬â€between‬â€noncongruent‬â€sides‬â€are‬â€congruent.‬ â€â€¬ â€The‬â€main‬â€diagonal‬â€bisects‬â€the‬â€angles.‬ â€Trapezoid-‬â€is‬â€not‬â€a‬â€parallelogram‬ â€â€¬ â€At‬â€least‬â€one‬â€pair‬â€of‬â€parallel‬â€sides.‬ â€Isosceles‬â€Trapezoid-‬â€the‬â€nonparallel‬â€sides‬â€are‬â€congruent.‬ â€â€¬ â€The‬â€base‬â€angles‬â€are‬â€congruent‬â€(‬â€2‬â€pairs)‬ â€â€¬ â€The‬â€diagonals‬â€are‬â€congruent‬ â€â€¬ â€Review‬â€coordinate‬â€proofs.‬ â€Sample‬â€Problems:‬ â€1.‬ â€If‬â€the‬â€sum‬â€of‬â€the‬â€interior‬â€angles‬â€of‬â€a‬â€polygon‬â€is‬â€1440°,‬â€then‬â€the‬â€polygon‬â€must‬â€be‬ â€2.‬ â€What‬â€is‬â€the‬â€measure‬â€of‬â€each‬â€interior‬â€angle‬â€of‬â€a‬â€regular‬â€hexagon.‬ â€3.‬ â€What‬â€is‬â€the‬â€measure‬â€of‬â€the‬â€largest‬â€exterior‬â€angle‬â€that‬â€any‬â€regular‬â€polygon‬â€can‬ â€have?‬ â€5.‬â€A‬â€quadrilateral‬â€must‬â€be‬â€a‬â€parallelogram‬â€if‬ â€1)‬â€one‬â€pair‬â€of‬â€sides‬â€is‬â€parallel‬â€and‬â€one‬â€pair‬â€of‬â€angles‬â€is‬â€congruent‬ â€2)‬â€one‬â€pair‬â€of‬â€sides‬â€is‬â€congruent‬â€and‬â€one‬â€pair‬â€of‬â€angles‬â€is‬â€congruent‬ â€3)‬â€one‬â€pair‬â€of‬â€sides‬â€is‬â€both‬â€parallel‬â€and‬â€congruent‬ â€4)‬â€the‬â€diagonals‬â€are‬â€congruent‬ â€.‬â€If‬â€the‬â€diagonals‬â€of‬â€a‬â€quadrilateral‬â€do‬â€not‬â€bisect‬â€each‬â€other,‬â€then‬â€the‬â€quadrilateral‬â€could‬ 6 â€be‬â€a‬â€1)‬â€rectangle‬â€2)‬â€rhombus‬â€3)‬â€square‬â€4)‬â€trapezoid‬ â€.‬â€Which‬â€set‬â€of‬â€statements‬â€would‬â€describe‬â€a‬â€parallelogram‬â€that‬â€can‬â€always‬â€be‬â€classified‬ 9 â€as‬â€a‬â€rhombus?‬ â€I.‬â€Diagonals‬â€are‬â€perpendicular‬â€bisectors‬â€of‬â€each‬â€other.‬ â€II.‬â€Diagonals‬â€bisect‬â€the‬â€angles‬â€from‬â€which‬â€they‬â€are‬â€drawn.‬ â€III.‬â€Diagonals‬â€form‬â€four‬â€congruent‬â€isosceles‬â€right‬â€triangles.‬ â€1)‬â€I‬â€and‬â€II‬ â€2)‬â€I‬â€and‬â€III‬ â€3)‬â€II‬â€and‬â€III‬ â€4)‬â€I,‬â€II,‬â€and‬â€III‬ †0.‬ â€A‬â€set‬â€of‬â€five‬â€quadrilaterals‬â€consists‬â€of‬â€a‬â€square,‬â€a‬â€rhombus,‬â€a‬â€rectangle,‬â€an‬ 1 â€isosceles‬â€trapezoid,‬â€and‬â€a‬â€parallelogram.‬â€Lu‬â€selects‬â€one‬â€of‬â€these‬â€figures‬â€at‬â€random.‬ â€What‬â€is‬â€the‬â€probability‬â€that‬â€both‬â€pairs‬â€of‬â€the‬â€figure's‬â€opposite‬â€sides‬â€are‬â€parallel?‬ â€1)‬â€1‬ â€2)‬â€â…˜â€¬ â€3)‬â€Â¾â€¬ â€4)‬â€â…–‬