FA-METABOLISM PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document provides a chapter on fats and fatty acid metabolism. It includes definitions, examples, and questions pertaining to the topic.
Full Transcript
## CHAPTER 4 ### FATS AND FATTY ACID METABOLISM **1. An example of a hydroxy fatty acid is** (A) Ricinoleic acid (B) Crotonic acid (C) Butyric acid (D) Oleic acid **2. An example of a saturated fatty acid is** (A) Palmitic acid (B) Oleic acid (C) Linoleic acid (D) Erucic acid **3. If the fatty ac...
## CHAPTER 4 ### FATS AND FATTY ACID METABOLISM **1. An example of a hydroxy fatty acid is** (A) Ricinoleic acid (B) Crotonic acid (C) Butyric acid (D) Oleic acid **2. An example of a saturated fatty acid is** (A) Palmitic acid (B) Oleic acid (C) Linoleic acid (D) Erucic acid **3. If the fatty acid is esterified with an alcohol of high molecular weight instead of glycerol, the resulting compound is** (A) Lipositol (B) Plasmalogen (C) Wax (D) Cephalin **4. A fatty acid which is not synthesized in the body and has to be supplied in the diet is** (A) Palmitic acid (B) Lauric acid (C) Linolenic acid (D) Palmitoleic acid **5. Essential fatty acid:** (A) Linoleic acid (B) Linolenic acid (C) Arachidonic acid (D) All these **6. The fatty acid present in cerebrosides is** (A) Lignoceric acid (B) Valeric acid (C) Caprylic acid (D) Behenic acid **7. The number of double bonds in arachidonic acid is** (A) 1 (B) 2 (C) 4 (D) 6 **8. In humans, a dietary essential fatty acid is** (A) Palmitic acid (B) Stearic acid (C) Oleic acid (D) Linoleic acid **9. A lipid containing alcoholic amine residue is** (A) Phosphatidic acid (B) Ganglioside (C) Glucocerebroside (D) Sphingomyelin **10. Cephalin consists of** (A) Glycerol, fatty acids, phosphoric acid and choline (B) Glycerol, fatty acids, phosphoric acid and ethanolamine (C) Glycerol, fatty acids, phosphoric acid and inositol (D) Glycerol, fatty acids, phosphoric acid and serine **11. In mammals, the major fat in adipose tissues is** (A) Phospholipid (B) Cholesterol (C) Sphingolipids (D) Triacylglycerol **12. Glycosphingolipids are a combination of** (A) Ceramide with one or more sugar residues (B) Glycerol with galactose (C) Sphingosine with galactose (D) Sphingosine with phosphoric acid **13. The importance of phospholipids as constituent of cell membrane is because they possess** (A) Fatty acids (B) Both polar and nonpolar groups (C) Glycerol (D) Phosphoric acid **14. In neutral fats, the unsaponificable matter includes** (A) Hydrocarbons (B) Triacylglycerol (C) Phospholipids (D) Cholesterol **15. Higher alcohol present in waxes is** (A) Benzyl (B) Methyl (C) Ethyl (D) Cetyl **16. Kerasin consists of** (A) Nervonic acid (B) Lignoceric acid (C) Cervonic acid (D) Clupanodonic acid **17. Gangliosides are complex glycosphingolipids found in** (A) Liver (B) Brain (C) Kidney (D) Muscle **18. Unsaturated fatty acid found in the cod liver oil and containing 5 double bonds is** (A) Clupanodonic acid (B) Cervonic acid (C) Elaidic acid (D) Timnodonic acid **19. Phospholipid acting as surfactant is** (A) Cephalin (B) Phosphatidyl inositol (C) Lecithin (D) Phosphatidyl serine **20. An oil which contains cyclic fatty acids and once used in the treatment of leprosy is** (A) Elaidic oil (B) Rapeseed oil (C) Lanoline (D) Chaulmoogric oil **21. Unpleasant odours and taste in a fat (rancidity) can be delayed or prevented by the addition of** (A) Lead (B) Copper (C) Tocopherol (D) Ergosterol **22. Gangliosides derived from glucosylceramide contain in addition one or more molecules of** (A) Sialic acid (B) Glycerol (C) Diacylglycerol (D) Hyaluronic acid **23. 'Drying oil', oxidized spontaneously by atmospheric oxygen at ordinary temperature and forms a hard water proof material is** (A) Coconut oil (B) Peanut oil (C) Rape seed oil (D) Linseed oil **24. Deterioration of food (rancidity) is due to presence of** (A) Cholesterol (B) Vitamin E (C) Peroxidation of lipids (D) Phenolic compounds **25. The number of ml of N/10 KOH required to neutralize the fatty acids in the distillate from 5 gm of fat is called** (A) Reichert-Meissel number (B) Polenske number (C) Acetyl number (D) Non volatile fatty acid number **26. Molecular formula of cholesterol is** (A) C27H45OH (B) C29H47OH (C) C29H47OH (D) C23H41OH **27. The cholesterol molecule is** (A) Benzene derivative (B) Quinoline derivative (C) Steroid (D) Straight chain acid **28. Salkowski test is performed to detect** (A) Glycerol (B) Cholesterol (C) Fatty acids (D) Vitamin D **29. Palmitic, oleic or stearic acid ester of cholesterol used in manufacture of cosmetic creams is** (A) Elaidic oil (B) Lanoline (C) Spermaceti (D) Chaulmoogric oil **30. Dietary fats after absorption appear in the circulation as** (A) HDL (B) VLDL (C) LDL (D) Chylomicron **31. Free fatty acids are transported in the blood** (A) Combined with albumin (B) Combined with fatty acid binding protein (C) Combined with ẞ-lipoprotein (D) In unbound free salts **32. Long chain fatty acids are first activated to acetyl-CoA in** (A) Cytosol (B) Microsomes (C) Nucleus (D) Mitochondria **33. The enzyme acyl-CoA synthase catalyses the conversion of a fatty acid of an active fatty acid in the presence of** (A) AMP (B) ADP (C) ATP (D) GTP **34. Carnitine is synthesized from** (A) Lysine and methionine (B) Glycine and arginine (C) Aspartate and glutamate (D) Proline and hydroxyproline **35. The enzymes of ẞ-oxidation are found in** (A) Mitochondria (B) Cytosol (C) Golgi apparatus (D) Nucleus **36. Long chain fatty acids penetrate the inner mitochondrial membrane** (A) Freely (B) As acyl-CoA derivative (C) As carnitine derivative (D) Requiring Na dependent carrier **37. An important feature of Zellweger's syndrome is** (A) Hypoglycemia (B) Accumulation of phytanic acid in tissues (C) Skin eruptions (D) Accumulation of C26-C38 polyenoic acid in brain tissues **38. An important finding of Fabry's disease is** (A) Skin rash (B) Exophthalmos (C) Hemolytic anemia (D) Mental retardation **39. Gaucher's disease is due to deficiency of the enzyme:** (A) Sphingomyelinase (B) Glucocerebrosidase (C) Galactocerbrosidase (D) ẞ-Galactosidase **40. Characteristic finding in Gaucher's disease is** (A) Night blindness (B) Renal failure (C) Hepatosplenomegaly (D) Deafness **41. An important finding in Neimann-Pick disease is** (A) Leukopenia (B) Cardiac enlargement (C) Corneal opacity (D) Hepatosplenomegaly **42. Fucosidosis is characterized by** (A) Muscle spasticity (B) Liver enlargement (C) Skin rash (D) Kidney failure **43. Metachromatic leukodystrophy is due to deficiency of enzyme:** (A) α-Fucosidase (B) Arylsulphatase A (C) Ceramidase (D) Hexosaminidase A **44. A significant feature of Tangier disease is** (A) Impairment of chylomicron formation (B) Hypotriacylglycerolmia (C) Absence of Apo-C-II (D) Absence of Apo-C-I **45. A significant feature of Broad Beta disease is** (A) Hypocholesterolemia (B) Hypotriacylglycerolemia (C) Absence of Apo-D (D) Abnormality of Apo-E **46. Neonatal tyrosinemia improves on administration of** (A) Thiamin (B) Riboflavin (C) Pyridoxine (D) Ascorbic acid **47. Absence of phenylalanine hydroxylase causes** (A) Neonatal tyrosinemia (B) Phenylketonuria (C) Primary hyperoxaluria (D) Albinism **48. Richner-Hanhart syndrome is due to defect in** (A) Tyrosinase (B) Phenylalanine hydroxylase (C) Hepatic tyrosine transaminase (D) Fumarylacetoacetate hydrolase **49. Plasma tyrosine level in Richner-Hanhart syndrome is** (A) 1-2 mg/dL (B) 2-3 mg/dL (C) 4-5 mg/dL (D) 8-10 mg/dL **50. Amount of phenylacetic acid excreted in the urine in phenylketonuria is** (A) 100-200 mg/dL (B) 200-280 mg/dL (C) 290-550 mg/dL (D) 600–750 mg/dL **51. Tyrosinosis is due to defect in the enzyme:** (A) Fumarylacetoacetate hydrolase (B) p-Hydroxyphenylpyruvate hydroxylase (C) Tyrosine transaminase (D) Tyrosine hydroxylase **52. An important finding in Histidinemia is** (A) Impairment of conversion of a-Glutamate to a-ketoglutarate (B) Speech defect (C) Decreased urinary histidine level (D) Patients can not be treated by diet **53. An important finding in glycinuria is** (A) Excess excretion of oxalate in the urine (B) Deficiency of enzyme glycinase (C) Significantly increased serum glycine level (D) Defect in renal tubular reabsorption of glycine **54. Increased urinary indole acetic acid is diagnostic of** (A) Maple syrup urine disease (B) Hartnup disease (C) Homocystinuia (D) Phenylketonuria **55. In glycinuria daily urinary excretion of glycine ranges from** (A) 100-200 mg (B) 300-500 mg (C) 600-1000 mg (D) 1100-1400 mg **56. An inborn error, maple syrup urine disease is due to deficiency of the enzyme:** (A) Isovaleryl-CoAhydrogenase (B) Phenylalnine hydroxylase (C) Adenosyl transferase (D) a-Ketoacid decarboxylase **57. Maple syrup urine disease becomes evident in extra uterine life by the end of** (A) First week (B) Second week (C) Third week (D) Fourth week **58. Alkaptonuria occurs due to deficiency of the enzyme:** (A) Maleylacetoacetate isomerase (B) Homogentisate oxidase (C) p-Hydroxyphenylpyruvate hydroxylase (D) Fumarylacetoacetate hydrolase **59. An important feature of maple syrup urine disease is** (A) Patient can not be treated by dietary regulation (B) Without treatment death, of patient may occur by the end of second year of life (C) Blood levels of leucine, isoleucine and serine are increased (D) Excessive brain damage **60. Ochronosis is an important finding of** (A) Tyrosinemia (B) Tyrosinosis (C) Alkaptonuria (D) Richner Hanhart syndrome **61. Phrynoderma is a deficiency of** (A) Essential fatty acids (B) Proteins (C) Amino acids (D) None of these **62. The percentage of linoleic acid in safflower oil is** (A) 73 (B) 57 (C) 40 (D) 15 **63. The percentage of polyunsaturated fatty acids in soyabean oil is** (A) 62 (B) 10 (C) 3 (D) 2 **64. The percentage of polyunsaturated fatty acids in butter is** (A) 60 (B) 37 (C) 25 (D) 3 **65. Dietary fibre denotes** (A) Undigested proteins (B) Plant cell components that cannot be digested by own enzymes (C) All plant cell wall components (D) All non digestible water insoluble polysaccha-ride **66. A high fibre diet is associated with reduced incidence of** (A) Cardiovascular disease (B) C.N.S. disease (C) Liver disease (D) Skin disease **67. Dietary fibres are rich in** (A) Cellulose (B) Glycogen (C) Starch (D) Proteoglycans **68. Minimum dietary fibre is found in** (A) Dried apricot (B) Peas (C) Bran (D) Cornflakes **69. A bland diet is recommended in** (A) Peptic ulcer (B) Atherosclerosis (C) Diabetes (D) Liver disease **70. A dietary deficiency in both the quantity and the quality of protein results in** (A) Kwashiorkar (B) Marasmus (C) Xerophtalmia (D) Liver diseases **71. The deficiency of both energy and protein causes** (A) Marasmus (B) Kwashiorkar (C) Diabetes (D) Beri-beri **72. Kwashiorkar is characterized by** (A) Night blindness (B) Edema (C) Easy fracturability (D) Xerophthalmia **73. A characteristic feature of Kwashiorkar is** (A) Fatty liver (B) Emaciation (C) Low insulin lever (D) Occurrence in less than 1 year infant **74. A characteristic feature of marasmus is** (A) Severe hypoalbuminemia (B) Normal epinephrine level (C) Mild muscle wasting (D) Low insulin and high cortisol level **75. Obesity generally reflects excess intake of energy and is often associated with the development of** (A) Nervousness (B) Non-insulin dependent diabetes mellitus (C) Hepatitis (D) Colon cancer **76. Atherosclerosis and coronary heart diseases are associated with the diet:** (A) High in total fat and saturated fat (B) Low in protein (C) High in protein (D) High in carbohydrate **77. Cerebrovasular disease and hypertension is associated with** (A) High calcium intake (B) High salt intake (C) Low calcium intake (D) Low salt intake **78. The normal range of total serum bilirubin is** (A) 0.2-1.2 mg/100 ml (B) 1.5-1.8 mg/100 ml (C) 2.0-4.0 mg/100 ml (D) Above 7.0 mg/100 ml **79. The normal range of direct reacting (conjugated) serum bilirubin is** (A) 0-0.1 mg/100 ml (B) 0.1-0.4 mg/100 ml (C) 0.4-06 mg/100 ml (D) 0.5-1 mg/100 ml **80. The normal range of indirect (unconjugated) bilirubin in serum is** (A) 0-0.1 mg/100 ml (B) 0.1-0.2 mg/100 ml (C) 0.2-0.7 mg/100 ml (D) 0.8–1.0 mg/100 ml **81. Jaundice is visible when serum bilirubin exceeds** (A) 0.5 mg/100 ml (B) 0.8 mg/100 ml (C) 1 mg/100 ml (D) 2.4 mg/100 ml **82. An increase in serum unconjugated bilirubin occurs in** (A) Hemolytic jaundice (B) Obstructive jaundice (C) Nephritis (D) Glomerulonephritis **83. One of the causes of hemolytic jaundice is** (A) G-6 phosphatase deficiency (B) Increased conjugated bilirubin (C) Glucokinase deficiency (D) Phosphoglucomutase deficiency **84. Increased urobilinogen in urine and absence of bilirubin in the urine suggests** (A) Obstructive jaundice (B) Hemolytic jaundice (C) Viral hepatitis (D) Toxic jaundice **85. A jaundice in which serum alanine transaminase and alkaline phosphatase are normal is** (A) Hepatic jaundice (B) Hemolytic jaundice (C) Parenchymatous jaundice (D) Obstructive Jaundice **86. Fecal stercobilinogen is increased in** (A) Hemolytic jaundice (B) Hepatic jaundice (C) Viral hepatitis (D) Obstructive jaundice **87. Fecal urobilinogen is increased in** (A) Hemolytic jaundice (B) Obstruction of biliary duct (C) Extrahepatic gall stones (D) Enlarged lymphnodes **88. A mixture of conjugated and unconjugated bilirubin is found in the circulation in** (A) Hemolytic jaundice (B) Hepatic jaundice (C) Obstructive jaundice (D) Post hepatic jaundice **89. Hepatocellular jaundice as compared to pure obstructive type of jaundice is characterized by** (A) Increased serum alkaline phosphate, LDH and ALT (B) Decreased serum alkaline phosphatase, LDH and ALT (C) Increased serum alkaline phosphatase and decreased levels of LDH and ALT (D) Decreased serum alkaline phosphatase and increased serum LDH and ALT **90. Icteric index of an normal adult varies between** (A) 1-2 (B) 2-4 (C) 4-6 (D) 10-15 **91. Clinical jaundice is present with an icteric index above** (A) 4 (B) 8 (C) 10 (D) 15 **92. Normal quantity of urobilinogen excreted in the feces per day is about** (A) 10-25 mg (B) 50-250 mg (C) 300-500 mg (D) 700-800 mg **93. Fecal urobilinogen is decreased in** (A) Obstruction of biliary duct (B) Hemolytic jaundice (C) Excess fat intake (D) Low fat intake **94. A complete absence of fecal urobilinogen is strongly suggestive of** (A) Obstruction of bile duct (B) Hemolytic jaundice (C) Intrahepatic cholestasis (D) Malignant obstructive disease **95. Immediate direct Vanden Bergh reaction indicates** (A) Hemolytic jaundice (B) Hepatic jaundice (C) Obstructive jaundice (D) Megalobastic anemia **96. The presence of bilirubin in the urine without urobilinogen suggests** (A) Obstructive jaundice (B) Hemolytic jaundice (C) Pernicious anemia (D) Damage to the hepatic parenchyma **97. Impaired galactose tolerance test suggests** (A) Defect in glucose utilisation (B) Liver cell injury (C) Renal defect (D) Muscle injury **98. Increased serum ornithine carabamoyl transferase activity is diagnostic of** (A) Myocardial infarction (B) Hemolytic jaundice (C) Bone disease (D) Acute viral hepatitis **99. The best known and most frequently used test of the detoxicating functions of liver is** (A) Hippuric acid test (B) Galactose tolerance test (C) Epinephrine tolerance test (D) Rose Bengal dye test **100. The ability of liver to remove a dye like BSP from the blood suggests a normal** (A) Excretory function (B) Detoxification function (C) Metabolic function (D) Circulatory function **101. Removal of BSP dye by the liver involves conjugation with** (A) Thiosulphate (B) Glutamine (C) Cystein component of glutathione (D) UDP glucuronate **102. Normal value of plasma total proteins varies between** (A) 3-4 gm/100ml (B) 6–8 gm/100ml (C) 10-12 gm/100ml (D) 14-16gm/100ml **103. A decrease in albumin with increased production of other unidentified proteins which migrate in ẞ, y region suggests** (A) Cirrhosis of liver (B) Nephrotic syndrome (C) Infection (D) Chronic lymphatic leukemia **104. In increase in a₂-Globulin with loss of albumin in urine suggests** (A) Primary immune deficiency (B) Nephrotic syndrome (C) Cirrhosis of liver (D) Multiple myeloma **105. The normal levels of prothrombin time is about** (A) 2 sec (B) 4 sec (C) 14 sec (D) 10-16 sec **106. In obstructive jaundice prothrombin time** (A) Remains normal (B) Decreases (C) Responds to vit K and becomes normal (D) Responds to vit K and increases **107. In parenhymatous liver disease the prothrombin time** (A) Remains normal (B) Increases (C) Decreases (D) Responds to Vit K **108. Urea clearance test is used to determine the** (A) Glomerular filtration rate (B) Renal plasma flow (C) Ability of kidney to concentrate the urine (D) Measurement of tubular mass **109. The formula to calculate maximum urea clearance is UX V / B, where U denotes** (A) Concentration of urea in urine in gm/24 hr (B) Concentration of urea in urine in mg/100 ml (C) Concentration of urea in blood in mg/100 ml (D) Volume of urine in ml/mt **110. Average maximum urea clearance is** (A) 30 ml (B) 50 ml (C) 75 ml (D) 90 ml **111. The average normal value for standard urea clearance is** (A) 20 ml (B) 30 ml (C) 40 ml (D) 54 ml **112. Urea clearance is lowered in** (A) Acute nephritis (B) Pneumonia (C) Early stage of nephritic syndrome (D) Benign hypertension **113. Glomerular filtration rate can be measured by** (A) Endogenous creatinine clearance (B) Para-aminohippurate test (C) Addis test (D) Mosenthal test **114. At normal levels of creatinine in the blood, this metabolite is** (A) Filtered at the glomerulus but not secreted nor reabsorbed by the tubule (B) Secreted by the tubule (C) Reabsorbed by the tubule (D) Secreted and reabsorbed by tubule **115. The normal values for creatinine clearance varies from** (A) 20-40 ml/min (B) 40-60 ml/min (C) 70-85 ml/min (D) 95-105 ml/min **116. Measurement of insulin clearance test is a measure of** (A) Glomerular filtration rate (B) Filtration factor (C) Renal plasma flow (D) Tubular secretory mass **117. The polysaccharide insulin is** (A) Filtered at the glomerulus but neither secreted nor reabsorbed by the tubule (B) Filtered at the glomerulus and secreted by the tubule (C) Filtered at the glomerulus and reabsorbed by the tubule (D) Filtered at the glomerulus, secreted and reabsorbed by the tubule **118. Normal insulin clearance is** (A) 40 ml/1.73 sqm (B) 60ml/1.73 sqm (C) 80 ml/1.73 sqm (D) 120 ml/1.73 sqm **119. Creatinine EDTA clearance is a test to measure** (A) Renal plasma flow (B) Filtration fraction (C) Glomerular filtration rate (D) Tubular function **120. The end products of saponification:** (A) glycerol (B) acid (C) soap (D) Both (A) and (C) **121. The normal PAH clearance for a surface area of 1.73 sqm. is** (A) 200 ml/min (B) 300 ml/min (C) 400 ml/min (D) 574 ml/min **122. Para amino hippurate is** (A) Filtered at glomeruli and secreted by the tubules (B) Filtered at glomeruli and not secreted by the tubules (C) Filtered at glomeruli and reabsorbed completely (D) Not removed completely during a single circulation of the blood through the kidney. **123. The Tm for PAH i.e the maximal secretory capacity of the tubule for PAH can be used to gavge the** (A) Extent of tubular damage **124. The normal Tm in mg/min/1.73 sqm for PAH is** (A) 20 (B) 40 (C) 60 (D) 80 **125. The normal range of filtration factor in an adult is** (A) 0.10-0.15 (B) 0.16-0.21 (C) 0.25-0.30 (D) 0.35-0.40 **126. The filtration factor tends to be normal in** (A) Early essential hypertension (B) Malignant phase of hypertension (C) Glomerulonephritis (D) Acute nephritis **127. The filtration factor is increased in** (A) Glomerulonephritis (B) Malignant phase of hypertension (C) Early essential hypertension (D) Acute nephritis **128. The filtration factor is decreased in** (A) Glomerulonephritis (B) Early essential hypertension (C) Malignant phase of hypertension (D) Starvation **129. Excretion of phenolsulphanpthalein (PSP) reflects** (A) Glomerulonephritis (B) Maximaltabular excretory capacity (C) Filtration factor (D) Renal plasma flow **130. Which of the following is a polyunsaturated fatty acid?** (A) Palmitic acid (B) Palmitoleic acid (C) Linoleic acid (D) Oleic acid **131. Which of the following is omega-3 polyunsaturated fatty acid?** (A) Linoleic acid (B) a-Linolenic acid (C) y-Linolenic acid (D) Arachidonic acid **132. Triglycerides are** (A) Heavier than water (B) Major constituents of membranes (C) Non-polar (D) Hydrophilic **133. Cerebronic acid is present in** (A) Glycerophospholipids (B) Sphingophospholipids (C) Galactosyl ceramide (D) Gangliosides **134. Acylsphingosine is also known as** (A) Sphingomyelin (B) Ceramide (C) Cerebroside (D) Sulphatide **135. The highest phospholipids content is found in** (A) Chylomicrons (B) VLDL (C) LDL (D) HDL **136. The major lipid in chylomicrons is** (A) Triglycerides (B) Phospholipids (C) Cholesterol (D) Free fatty acids **137. Number of carbon atoms in cholesterol is** (A) 17 (B) 19 (C) 27 (D) 30 **138. The lipoprotein richest in cholesterol is** (A) Chylomicrons (B) VLDL (C) LDL (D) HDL **139. The major storage form of lipids is** (A) Esterified cholesterol (B) Glycerophospholipids (C) Triglycerides (D) Sphingolipids **140. Cerebonic acid is present in** (A) Triglycerides (B) Cerebrosides (C) Esterified cholestrol (D) Sphingomyelin **141. The nitrogenous base in lecithin is** (A) Ethanolamine (B) Choline (C) Serine (D) Betaine **142. All the following are omega-6-fatty acids except** (A) Linoleic acid (B) a-Linolenic acid (C) y-Linolenic acid (D) Arachidonic acid **143. All the following have 18 carbon atoms except** (A) Linoleic acid (B) Linolenic acid (C) Arachidonic acid (D) Stearic acid **144. A 20-carbon fatty acid among the following is** (A) Linoleic acid (B) a-Linolenic acid (C) B-Linolenic acid (D) Arachidonic acid **145. Triglycerides are transported from liver to extrahepatic tissues by** (A) Chylomicrons (B) VLDL (C) HDL (D) LDL **146. Cholesterol is transported from liver to extrahepatic tissues by** (A) Chylomicrons (B) VLDL (C) HDL (D) LDL **147. Elevated plasma level of the following projects against atherosclerosis:** (A) Chylomicrons (B) VLDL (C) HDL (D) LDL **148. All the following amino acids are non-essential except** (A) Alanine (B) Histidine (C) Cysteine (D) Proline **149. Sulphydryl group is present in** (A) Cysteine (B) Methionine (C) Both (A) and (B) (D) None of these **150. Oligosaccharide-pyrophosphoryl dolichol is required for the synthesis of** (A) N-linked glycoproteins (B) O-linked glycoproteins (C) GPI-linked glycoproteins (D) All of these **151. In N-linked glycoproteins, oligosaccharide is attached to protein through its** (A) Asparagine residue (B) Glutamine residue (C) Arginine residue (D) Lysine residue **152. De hovo synthesis of fatty acids occurs in** (A) Cytosol (B) Mitochondria (C) Microsomes (D) All of these **153. Acyl Carrier Protein contains the vitamin:** (A) Biotin (B) Lipoic acid (C) Pantothenic acid (D) Folic acid **154. Which of the following is required as a reductant in fatty acid synthesis?** (A) NADH (B) NADPH (C) FADH2 (D) FMNH2 **155. Hepatic liponenesis is stimulated by:** (A) CAMP (B) Glucagon (C) Epinephrine (D) Insulin **156. De novo synthesis of fatty acids requires all of the following except** (A) Biotin (B) NADH (C) Panthothenic acid (D) ATP **157. Acetyl CoA carboxylase regulates fatty acid synthesis by which of the following mechanism?** (A) Allosteric regulation (B) Covalent modification (C) Induction and repression (D) All of these **158. β-Oxidation of fatty acids requires all the following coenzymes except** (A) COA (B) FAD (C) NAD (D) NADP **159. Which of the following can be oxidized by ẞ-oxidation pathway?** (A) Saturated fatty acids (B) Monosaturated fatty acids (C) Polyunsaturated fatty acids (D) All of these **160. Propionyl CoA is formed on oxidation of** (A) Monounsaturated fatty acids (B) Polyunsaturated fatty acids (C) Fatty acids with odd number of carbon atoms (D) None of these **161. An enzyme required for the synthesis of ketone bodies as well as cholesterol is** (A) Acetyl CoA carboxylase (B) HMG CoA synthetase (C) HMG CoA reductase (D) HMG CoA lyase **162. Ketone bodies are synthesized in** (A) Adipose tissue (B) Liver (C) Muscles (D) Brain **163. All the following statements about ketone bodies