Document Details

PreeminentHorse5819

Uploaded by PreeminentHorse5819

University of North Carolina at Chapel Hill

Tags

biochemistry energy metabolism physiology exercise science

Summary

This document discusses the different pathways for energy production in the body, including the breakdown of carbohydrates and fats. It explains the processes of glycolysis and the Krebs cycle, emphasizing the role of ATP in cellular energy. It also details the mobilization and catabolism of fats.

Full Transcript

4Intramuscularaliverderivedcarbonskeletonsofaminoacids 5Anaerobicreactionsintheinitialphaseofglucosebreakdown 6Porphosphorylated ADPunderenzymecontrol creatinekinaseoadenylatekinase ADPADD A ATPAMP Howdoweusefoodforfuel...

4Intramuscularaliverderivedcarbonskeletonsofaminoacids 5Anaerobicreactionsintheinitialphaseofglucosebreakdown 6Porphosphorylated ADPunderenzymecontrol creatinekinaseoadenylatekinase ADPADD A ATPAMP Howdoweusefoodforfuel majorsourcesofpotentialenergybuttheydonottransferdirectlytobiologicalworn Foodmacronutrientsprovide frommacronutrientcatabolismfunnelsthroughAdenosine Triphosphate ATP Energy ThepotentialenergywithinATPpowersallofthecellsenergyrequiringprocesses A ATPformsfromadenosinelinkedtothree phosphates Adenosinediphosphate ADP formswhenATPjoinswithwatercatalyzed theenzymeadenosinetriphosphatase ATPase by ATP H2oATPase ADP Pi FreeenergyliberatedinATPhydrolysisenergyreleased powersallformsofofbiologicworn ATPrepresentsthecell's energycurrency ATPStorage Cellscontainonly asmallquantityofATPsoitmustcontinuallyberesynthesized ATPlevelsdecreaseinskeletal muscleonly underextremeexerciseconditions Thebodystores80100gofATPatanytimeundernormalrestingconditions thatsonlyenoughstoredenergytopower 23sofmaximalexercise HowisATPsynthesized ThreeATPsynthesispathways ATPPersystemanaerobic Glycolyticsystem anaerobic Oxidativesystemaerobic ADPPi tenergy ATP ofADP phosphorylation canoccurineitherabsenceorpresenceof0 ATP PGpposphreatine Pcr theenergyreservoir fromanaerobicsplittingof a phosphatefromPcrstoredinbody SomeenergyforATPresynthesiscomes Cellsstoreapproximately 46timesmorePerthanATP ATPα Perprovideanaerobicsourcesofphosphateboundenergy Mxncatalyzed byCKCPK extrareps moreATPtousewhentrainingdoesnt ChcontrolsrateofATPproductionbynegativefeedbacksystem build directly muscle If 60 as egftp whenATPlevelsb ADP9 Chactivity 58 20 f whenATPlevels Chactivityto GlycolyticSystem 0 2 4 10 12 14 breakdown Glycolysis glucose me b reakdown Glycogenolysis glycogenreserves toproduceglucoseinhighcellularactivitywithglucosedepletionglycogenbreakdown theformationofglucosefromanonsugarprecursor i.elactatepyruvateaminoacids Gluconeogenesis Glycogenesissurplus formsglycogeninlowcellular g lucose olorwithdepletedglycogenreservesglycogensynthesis activity Anaerobic vs Aerobic Glycolysis Twoformsofcarbohydratebreakdown 1Anaerobicfastglycolysisresultsinpyruvatetolactateformationwiththereleaseofabout51ofenergywithintheoriginalglucosemolecule 2Aerobicslowglycolysisresultsin pyruvatetoacetylCoAtocitricacidcyclea electrontransportoftheremainingenergywithintheoriginalglucosemolecule AnaerobicGlycolysisFast Rapidglycolysisoccurs without molecular involvement oxygen Glucose orglycogenmustfirstconverttoglucose6phosphate energyrequiredtocomplete thisstepfromglucose 1012enzymaticreactionstotal alloccursinthecytoplasm ATPyield2ATPforglucose 3ATPforglycogen for mins Sustainsenergyneedsforallouthighintensityactivity 15s2 Anaerobic glycolysisregulated by glycolyticenzymeshexokinasepyruvate fructokinaserate kinase aphospho limitingenzyme ATPAADP PFKactivity or ATP toPFKactivity fructose 1 6biphosphatelevels oxygeninabundancelimits glycolysis Taitate implant s an fuelduringexerciseusinglactateas ametabolicfuelaccountsfor 751oflactateremovalduringexercise thecoricycle Muscles canuselactatein 3ways Glucose Glucose 1lactateproducedincytoplasmcanbetakenupbymitochondriaofthesamemusclefiber oxidized 2lactatecanbetransportedviaMCTtransporterstoanotherall ooxidizedtherelactateshuttle again Ishuate p 3lactatecanrecirculatebacktotheliver bereconvertedtopyruvateothentoglucosethroughgluconeogenesis Laictate WithouttheCoriCycleprolongedexercise wouldbeseverelylimited 2Laitate 2 Blood OxidativeSystem Liver Muscle Aerobicglycolysisthe remainingenergyfroma glucosemoleculeis releasedwhen to the pyruvateconverts acetylCoAo enters Krebscycle ATPyeildforglucosemoleculeis3233ATP oftria Oxidation glycerolis 100ATP Cansupplysteadyenergyfor hours Wheredoesthisoccur glucose pyruvate cytosol acetylCoA citricacidcycleooxidativephosphorylation mitochondria CitricacidKrebsCycle ZacetylCoA 2GTP 2ATP alsoproducedNADHFADHHt toomanyHtin all tooacidic Htmovedtoelectrontransportchain Oxygensroleinenergy metabolism Htelectronstraveldownthechain HtpumpedfrominsidetooutsideconcentrationgradientmoreHtoutside HtcombineswithO2 neutralizedformsH2o Electrons ozhelpformATP Thereare2.5ATPperNADH 1.5ATPperFADH oxidativephosphorylation synthesizesATP bytransferringelectronsfromNADH FADHtooxygen control ofoxidativephosphorylation isocitratedehydrogenaseis aratelimitingenzyme e lectrontransportchain regulates isinhibitedbyATP activatedbyADP EnergyfromFat fatenergysource Triglyceridesmajor brokendownto 1 glycerol 3freefattyacids Yeilds 3 4 timesmoreATPthanglucose Slowerthanglucoseoxidation Fatsupplies3080.1 ofenergyforbiologicalworndependingonnutritionalstatusleveloftraining aintensitydurationofphysicalactivity Dynamicsoffatmobilization lipasestimulatestriacylglycerolTAGnotinactive hormonesensitive to beusedbreakdownintoitsglycerolofattyacidcomponentsresponse hormonesecretions statecant thebloodtransportsfreefattyacidsFFAs releasedfromadipocytes triacylglycerol 3H20 lipase glycerol 3fattyacids Glycerol FattyAcid Catabolism Glycerol notprimarysourceforATP 19 FattyAcids intoacetylCoAin mitochondriavia convert βoxidationforentryintotheKrebscycle Boxidation aseriesofstepswheretwocarbonacylunitsarecleavedfromacarbonchainofanFFA theacylunitsareconvertedtoacetylCoAthenfollowsamepathas glucoseoxidation 16CFFApalmiticacid 8acetylCoA netyeildof106ATP upfrontexpenditureof 2ATPtostartβ oxidationprocess Hormonaleffects oflipolysis epinephrinenorepinephrineglucagono growth lipaseactivation subsequentlylipolysis FFAmobilizationfrom hormoneaugment adiposetissue hormonal releasetriggered byexercisestimulatesadiposetissuelipolysistofurtherincreaseFFAdeliverytoactivemuscle atrestyoupredominatelyusefatasenergysource ProteinBreakdown Rarelyusedas a substrate starvation canbeconvertedtoglucose gluconeogenesis canbeconvertedtoacetylCoA becauseenergy yieldisgenerallyminimalestimatesignoreproteinmetabolism Exercise Metabolism ATP Energyfromeachenergysystemprogressesalong a continuum or Allthreesystemsinteractforallactivities of 845 gigoff'sb nosinglesystemcontributes100.1 no lip fat butonesystemoftendominatesforagiventask HowtoDetermineDominantEnergySystemTimeo Intensity capacity ATPPcrsystemhighintensityexerciseofshortduration lbsrequiresimmediateenergyfromintramuscularAtp p FastGlycolysisintenseshortdurationexercise 1.1.5 fromstoredmuscleglycogenbreakdownviaanaerobicglycolysiswithresultinglactateformation mincomesmainly lactateaccumulation am risiooaiactateuntraine mnmaoodiactate.trained notaccumulateatallexerciselevels bloodlactatedoes exercise2501aerobiccapacity bloodlactateproduction o duringlightmoderate lactate equals d isappearance fifth ftp.fhmdtqgftfaaa a nannyuntrainedperson no man in aannuan n wanna atanygo.no a man man my in ftp.ifeng.fqgqpq qq.fqqqgqqaq.gg rapid a largeaccumulationsofblood occurduringmaximalexerciseof60 lactate 180s qqqqq bloodlactatethresholdoccurswhen cellscan m uscle meetenergydemands neither noroxidizelactateatitsrateofformation aerobically i inrates arenarates ii percentaroamax during recoveryaerobicexercisesacceleratesthe of lactate removal blood riff AerobicMetabolismprovides nearlyalloftheenergytransferwhenintenseexercisecontinuesbeyondaminute 2mins i.iq mass Mdd Crossover Concept fdffffffff.NET Atrest below601 exercise nomaxlipidsserveastheprimarysubstrate 0 per analysis Éffiffiij.fi 751V02 Duringhighintensity above max serve carbohydrates astheprimarysubstrate igifEE maximal available energy fj Maximal Thecrossoverpointistheintersectionwhichiseffectedbyexerciseintensity endurance training fÉf m anthanamauptanen Tokygmenta byman in in ffft f Nanaxoccurswhenoxygenuptakeplateausor increasesonlyslightlywithadditionalincreasesinexerciseintensity Provides a quantitativemeasureof apersonscapacityforsustainedaerobicATPresynthesis fff fffffffqffffff zÉÉ o abilitytomaintainintenseexercisefor indicates than45min longer f SteadyStateExercise s oxygen uponeduringexercise inanyage exponentia beforeitpans menremainsin steadystateforthedurationof ifyouincreaseintensityyoumayseeanotherincreaseo thenplateaustate on ff n fifthff steady stateteadeyrobtialemexteabideisnoudrefh.dz aiyalapyghtyyfy.ggrefining www.rhiifaymiifaifffffiifi infiffffiya aminagingqq.iq Twosteadystatelimitingfactorswhyyoucantrunforever 1fluidloss electrolytedepletion 2maintainingadequatereservesofbothliverglycogenforcentralnervoussystemfunctionomuscleglycogentopowerexercise OxygenDeficit Differencebetweentotal oxygenconsumedduring totalthat exerciseothe have would been hadsteadystate c onsumed 099m beenachievedatthe start Representsimmediateanaerobic from hydrolysis transfer energy the ofintramuscularATP glycolysis untilsteadystateenergy meetscurrentenergydemands transfer Smoothblendingwithconsiderableoverlapofone of transfer another mode energy to ftp.qq.f zyyyy.gg OxygenConsumptionDuringRecovery groggyegging ggggggggqg.gg itggggym yymgggyggyyyygyggg.ge gg EPOC oxygendebt totalrecoveryv0 minustotalv0 theoreticallyconsumedatrestduringtherecovery mum toEff if5.5LofOzwereconsumedinrecoveryuntilgettingbacktorestingvalueof0.3104mina recoverytoon10minutesEPOC5.5L10.3110min 2.4LAtoms theexerciseboutcausedphysiologicalalterationsoduringrecoveryonadditional interpretation of0 wererequiredbeforeitreturnedbacktopreexerciserestinglevels 2.41 EPOC bodytoits Restoresthe preexercisecondition in lighttomoderateactivityrecoveryV0replenishesATPdepletedduringactivity shortduration inlongerdurationintenseaerobicexercise 60 min recoveryV0remainselevatedforlongerduration in withlactate exercise exhaustive accumulation a smallportionofEPOCresynthesizeslactatetoglycogen SeveralfactorsimpactrecoveryV02 levelofanaerobicmetabolismduringactivity ifanaerobicactivityproduced lactate respiratoryadjustments circulatory adjustments hormonal a ionicadjustment I thcdindgevatecokrgtabdism.ge inb requirement exercise thermaladjustments me ii me FactorscontributingtoEPOCfollowingexhaustiveexercise to aerobic moderateh eavy exercise resynthesizeATP Pcr voe rate team of requirement exercise energy resynthesizelactate toglycogencoricycle sit Iiip oxidizelactateinenergy metabolism me to restoreoxygen myoglobinoblood restoreelevatedHRventilation otherphysiologicalfunctions fififL ofhormones catecholamines thermogeniceffects a it restorethermogeniceffectsofelevatedcoretemperature ofEPOCforExercise it Implications Recovery ÉÉiÉÉÉÉi Noappreciablelactateaccumulateswithsteadystateaerobicexerciseorbrief 5 timetorecoverbouts p roductionless actale ofallouteffort recoveryprogressesrapidly can exercise begin againwithonlyabriefrestperiodopassiverecovery Lactate buildupoccursduringprolongedanaerobic exercise sorecoveryV02takeslonger toreturntobaseline whoattain ahighlevelof maynotfullyrecoverduringbriefintermittentrestintervalsoflessintenseexercise athletes m etabolismduringexercise anaerobic forspeedingrecoveryincludeactiveorpassivemethods Procedures downortaperingoff activerecovery cooling mosteffect includessubmaximalexercise preventm usclecramps stiffness facilitateoverall may recovery if fi passive Iff recovery liesdownwithminimal individual includemassagecold m odifications energyexpenditure bodypositions oconsumingcoldliquids showersspecific ftp Optimal I t Eket inrecoveryfromhighintensityexercisemmmm increasedbloodperfusionthroughthe liverheart ventilatorsmuscles f increasedbloodflowthroughskeletalmusclesin activerecovery If lefttotheirownchoicemostindividualsselecttheiroptimalrecoveryexerciseintensity Intermittent Interval PhysicalActivity if ftp.ffffiiffn so a Application ofdifferentworntorestintervalswithhighto supra maximalexerciseis a techniquetooverloada specificenergytransfersystem canproducerapidrecoveryoenablesubsequentintenseexercisetobeginfollowing abriefrecovery cantrainyourselftorecoverquicher Training Principles Exercise TrainingPrinciples stimulatingstructuralafunctional toimproveperformanceinspecificphysicaltasksremainsamajorobjective exercisetraining adaptations of Basicapproachtophysiologicconditioningappliessimilarlytomales femaleswithinabroad agerange respond adapt totraininginsimilarways Training Specificity Ahighdegreeofspecificityexistsfortheeffectsofphysicaltrainingonneuromuscularpatterningometabolicdemands Trainingtoachieve ahighaerobicpower vozman contributeslittletoonescapacitytogenerateenergyanaerobicallyto vice versa thecapacityofbothimmediateo shorttermenergysystemscanbeassessedusingperformance olaboratorybasedtests SpecificityPrinciple mᵗm Adaptationsin metabolica physiologicfunctionsd epend onintensitydurationfrequency omodeofimposedoverload specificoverloadofshortduration inducesspecific strengthpoweradaptations Éf specificendurancetrainingelicits specificaerobicsystemadaptations overload o.gg me man www mn ggfÉÉ faaa.gggyg.am mm ggggggygyyyy.iq increasesresistanceorrepetitions Progressivetraining asstrength increaseto must gig furtherincreasestrength immediateenergysystem Mmmmm Concept ofindividualized oprogressiveoverloadappliestoathletessedentarypersonsoclinicalpopulations 10s nmin 10 Specificity ofLocalChanges raiseaura Overloadingspecific withendurancetrainingenhancesperformanceoaerobicpower m uscles byfacilitating0 transporttoa02usedbytrainedmuscles Adaptationsoccuronly inspecificallytrainedmusclesobecomeapparentinexercisethatactivatesthismusculature abasketballplayerdoing averticaljumptestismoreeffectivethanthe test playerdoing acycling IndividualDifferencesPrinciple Allindividualsdonotrespondthesameto agiventrainingstimulus When arelativelyhomogenous group beginsexercisetrainingonecannotexpecteach to person achievesamefitnessimprovements geneticsaffectsperformance variationsexistincell growthratesmetabolismocardio respiratory neuroendocrineregulation ReversibilityPrinciple Detrainingrapidlyoccurswhenterminating atrainingprogram only1 2weeksofdetrainingreducesbothmetabolic exercisecapacity manytrainingimprovementsfullylostwithinseveralmonths Evenwithtrainedathletesbeneficialeffectsofpriortrainingremaintransientoreversible trainingtoslowdetrainingeffects mostathletesmaintainmoderatelevelofoffseasonsportspecific ChronicMetabolicAdaptations Anaerobic ATP PcrSystem lessthan6secondsplacesgreatestdemand onATPpersystem Maximaleffortactivitieslasting or minimalenzymaticasanas fffffff.io palimantan keyenzymeChcreatinekinase thismethodoftrainingcanleadtoincreasedstrength increasesintotalamountofATPPcr thatcanbeusedduringexercise fh fdof.ee amazon.nl Anaerobic Glycolytic System At Anaerobicactivities lasting 30shavebeenshowntoincrease keyglycolyticenzymeactivity ftpfiffauraggnimogn 120180 Keyenzymes phosphofructokinase PFK LDHhexokinasephosphorylase increasesin glycogencontent because important highintensityexerciseusedglycogen is aao.g.i.a.i.at t.a.it of duringcyclingexercise different Glycogendepletionpatterns intensitieso durations oh off 3 ofnomanhighresumedinconsiderablylessdepletionofmoonyou exerciseat live.yq.iaq.ae usingfatsasfuelwontuseglycogenforawhile qq.a.am themostrapiddepletionoccurredatexerciseintensitiesbetween831501Vormax AerobicSystemChangeswithTraining Metabolic muscularadaptations hoaxim an time extension o musclefiberscontainlarger endurancetrainedskeletal morenumerousmitochondriathanlessactivefibers mitochondrialoxidativeenzymeactivityincreases anabefore trainingorafter training fgfÉf i e succinatedehydrogenase SDH citratesynthase 8 Oneresultof mitochondrialchanges withendurancetraining go a glycogensparingaenhancedreliance on fatasafuelsourceat agivenexerciseintensity crossoverpointwillshift thislikelyimprovestheabilitytosustainhigherexerciseintensityi.emaintainingahigherspeedduringarace Aerobictrainingenhancesfatcatabolismin submaximalexercise Fast SlowTwitch MuscleFiberTypes if g a go Fasttwitch type11 rapidcontractionspeedohighcapacityforanaerobicATPproduction inglycolysis highamountofATPfast 8 highlyactive in changeofpace o stop go activities effeffiff a Slowtwitch typeI a a generatesenergythroughaerobicpathwaysacceptmore 02morebloodflowred duration Exercise 120 activeincontinuousactivitiesrequiring steadyrateaerobicenergytransfer min Athleteswhoexcelindifferentsporting events highpowervsenduranceactivities usuallyhave alargepercentageofthespecificmuscle typethatsupportsthesportsenergydemands fiber sprintswimmerwith801type11fibers with80.1 endurancecyclist typelfibers OxygenDeficit in Trained Untrained reachsteadrate Endurancetrainedindividuals morerapidly witha smalleroxygendeficit compared to sprintpowerathletescardiacpatientsolderadults oruntrainedindividuals persontoconsumea greater kineticresponseallowsthetrained afasteraerobic totalamountofoxygento reach steady theanaerobiccomponentofexerciseenergytransferproportionately smaller rateexercise makes BloodLactateConcentration Endurance training IL 4 lowers levels decreasedproductionincreasedclearance bloodlactate E of extendsonset bloodlactate a ccumulationduring exercise ofincreasingintensity ziti doesntoccuruntil ofaerobiccapacity giigii.fi accumulation higherpercentage allows individuals pafypajeaain.hjgiig.in ysiatyaejiii longer iiiiii ig go.ghimj.fi jgi Testing o Energy Expenditure PerformanceTeststoEvaluatetheImmediateEnergySystem Powertestsmeasurebriefmaximalexercisecapacity PowerreferstotimerateaccomplishmentofwornPower Force Distance Time Typesofpowertests stairsprintingpowertests jumpingpowertests exerciseof68s sprintrunningcyclingshuttleruns oarmcranking anyallout Physiologic to Tests EvaluatetheImmediateEnergySystem Measuresthat evaluate energygeneratingcapacity oftheimmediateenergysystemdependupontwofactors 1 SizeoftheintramuscularATPPcrpool 2DepletionratesofATP Pcrin alloutshortdurationexercise ATPoPcrdepletionratesprovideadirectestimateocorrelatehighlywithperformanceassessmentsofimmediateenergysystem however it isnearlyimpossibletoobtainsuch duringallout precisebiochemicaldata exerciseof briefduration PerformanceTests toEvaluatetheShortTermEnergySystem thatactivatetheshorttermenergysystemrequiremaximalexerciseforupto2minduration Performances alloutrunsstationarycyclingshuttleruns orepetitiveweightliftingat agivenit max WingateTest 30ssupramaxialeffortonlegor armcycleergometer initialresistancesetto0.075kgBWresistanceincreasedafterovercominginitialinertia TeststoEvaluatetheShortTermEnergySystem Physiologic Bloodlactatelevelis a commonindicatorofactivationofshorttermenergysystem GlycogenDepletion to depletionpatterncanreveal glycolyticcontribution powertheshorttermenergysystem glycogenprovides themostrapidphosphorylationofATP o servesastheonlystoredmacronutrientthatanaerobically resynthesizes ATP MeasuringEnergyExpenditure 401ofenergyliberatedviametabolismofglucose fatsproducesATP remaining601 isimmediatelyreleasedasheat Therateofheatproductionoperationallydefinestherateofenergymetabolism Calorimetrydefinesthemeasurementofheattransfer direct calorimetry ljmofgstamnta.am the fhesatop 9fifYon indirectcalorimetry DirectCalorimetry directymeasuresenergyexpenditureviaheatproduction limitedpracticalapplicationswithhumans accuratemeasurements ofheatproductionrequireconsiderabletime expense forenergy determinationsformostsportoccupational orecreationalactivities directcalorimetersremaininapplicable bestforrestingmetabolismasteadystateaerobicexercise IndirectCalorimetry Oxidativemetabolismduringaerobic useso exercise o producesco o water therateof o o CO2exchangeinthelungsrateofusageo releasebybodytissues energyexpendituremeasuredviarespiratoryexchangeofo o 002 heatproductionisnotmeasureddirectly indirectbecause Assumption energyproductionis completely oxidative if largeportionis anaerobicrespiratorygaseswillnotreflectall metabolicprocesses Respiratory Quotient fat a proteinrequiredifferentamountsof 0 forcompleteoxidationofeachmoleculescarbonahydrogenatomstocoz Carbohydrate H2Oendproducts RespiratoryquotientRQ describesthisratioofmetabolicgas exchange RQ produced Or CO2 consumed RespiratoryExchangeRatioRER Computed thesameasRQ RER CO2produced Orconsumed Byindirectcalorimetry measuresrespiratoryrateof0ozreleasedOrconsumption Provides a convenientguide toapproximatenutrientmixturecatabolizedforenergy 0.7 predominately fatforfuel 1 0 predominatelyCHOforfuel RER 1.0indicatesexcessCO2production inrelationtooz uptake hyperventilationincreasesCO2 todisproportionatelyhigherlevelscomparedtocurrentmetabolicdemands RER 0.70followingintenseexercisemayrepresent gluconeogenesis TotalDailyEnergyExpenditure Metabolisminvolves allchemical reactionsofbiomoleculeswithinthebodythatencompasssynthesisanabolism o breakdown catabolism ThreefactorsaffecttotaldailyenergyexpenditureTREE restingmetabolicrate biggestaffect ofbasal a sleepingconditionsplusthemetaboliccostofarousal consisting thermogeniceffectoffood consumed energyexpended duringphysicalactivity o recovery Components oftotaldailyenergyexpenditure 60751Restingmetabolicrate fatfreebodymassgenderthyroidhormonesproteinturnover sleepingmetabolism basalmetabolism arousalmetabolism 15 of 301Thermiceffect physicalactivity durationo intensity inoccupation inhome insportorecreation 101Thermiceffectoffeedingfoodintakecoldstressthermogenicdrugs obligatory thermogenesis facultativethermogenesis Basal o RestingMetabolicRates BasalmetabolicrateBMR of minimumlevel energy tosustainvitalfunctions reflectsthebody totalheatproduction RestingmetabolicrateRMRorREE alwaysslightlyhigherthanBMR theamountofcaloriesburnedatrest bodysizehealthfitnessmusclemassagehormonesbodytemperature Influences Factorsthat metabolicrate influence lawfundamentalrelationshipbetweenheatproductionobodysize surfacearea BMR RMRvaryinproportiontothesquareofbodysurfacearea perhourkcalm h changesinbodycomposition inFFMoor decrease increasein i bodyfat canpartiallyexplaintheBMRreductionobservedwithaging have5101lowerBMRthanmalesofthesameageosizelikelyfrommorefatolessfatfree females mass EstimatingRestingDailyEnergyExpenditure Usuallyexpressedinhealth orkcald canbe estimatedfromBMR kcalm h o surfacearea m canbeestimatedfromfatfreemassFEM RDEEheald 370 21.6FFMkg Maleweighs 90.9 kgat211BF 0.2190.919.1kg 90.919.1718kgFFM RDEE37071.8216 1920 kcal PhysicalActivityAffectsonTDEE themostprofoundeffectonhumanenergyexpenditure Physicalactivityexerts accounts for15301ofTREE Regularphysicalactivity stimulatesrestingmetabolism Regularenduranceoresistance offsetsthedecreaseinrestingmetabolismthatusuallyaccompaniesaging exercise each 1lb gaininFFMincreasesRMRby 710 kcald

Use Quizgecko on...
Browser
Browser