Unit IV: Correlation & Spectral Densities PDF
Document Details
Uploaded by EasierSpruce
Tags
Summary
These notes cover correlation and spectral densities for stationary random processes. The document defines key concepts such as autocorrelation and cross-correlation functions, explores their properties, and includes example problems and solutions. It also touches on topics like statistical independence and orthogonality.
Full Transcript
UNIT IV CORRELATION AND SPECTRAL DENSITIES PART – A 1. Define correlation of the process { X t }. Answer: If the process X t is stationary either in the strict sense or in the wide...
UNIT IV CORRELATION AND SPECTRAL DENSITIES PART – A 1. Define correlation of the process { X t }. Answer: If the process X t is stationary either in the strict sense or in the wide sense, then E[ X t X t ] is a function of , denoted by R or RXX . This function RXX is called the autocorrelation function of the process X t . 2. State any two properties of an autocorrelation function. Answer: i. R is an even function of . ii. If R is the autocorrelation function of a stationary process X t with no periodic component, then lim R x2 , provided the limit exists. 3. Prove that for a WSS process { X t } , RXX RXX . Answer: RXX E[ X t X t ] RXX E[ X t X t ] E[ X t X t ] RXX Therefore R is an even function of . 4. Show that the autocorrelation function RXX is maximum at 0. Answer: RXX is maximum at 0 i.e. R R0 Cauchy-Schwarz inequality is E[ XY ] E X 2 E Y 2 2 Put X X t and Y X t , then EX t X t 2 EX 2 t E X 2 t i.e. R 2 EX 2 2 [Since E X t and Var X t are constants for a stationary process] R 2 R02 Taking square root on both sides, R R0. [Since R0 E X 2 t is positive] 5. Statistically independent zero mean random processes X t and Y t have autocorrelation functions RXX e and RYY cos 2 respectively. Find the autocorrelation function of the sum Z t X t Y t . Answer: 104 ------------------------------------------------------------------------------------------------------------------------------------------------ Given RXX e , RYY cos 2 E X t EY t 0 If Z t X t Y t , then RZZ RXX RYY RXY RYX RXY E[ X t Y t ] [Since the processes are independent] RXY 0 0 0 Similarly RYX 0 RZZ e cos 2 0 0 e cos 2 6. The autocorrelation function of a stationary process is RXX 16 9. Find the mean and variance of the process. 1 6 2 Answer: Given RXX 16 9 1 6 2 x2 lim R 9 lim16 1 6 2 9 16 lim 1 6 2 16 0 16 Mean x E X t 4 E X 2 t RXX 0 9 16 1 60 16 9 25 Variance 2 E X t E X t 2 25 4 25 16 9 2 7. If the autocorrelation function of a stationary processes is RXX 36 4. Find the mean and variance of the process. 1 3 2 Answer: Given RXX 36 4 1 3 2 x2 lim R 4 lim 36 1 3 2 4 36 lim 1 3 2 36 0 36 105 ------------------------------------------------------------------------------------------------------------------------------------------------ Mean x E X t 6 E X 2 t RXX 0 4 36 1 30 36 4 40 Variance 2 E X t E X t 2 40 6 40 36 4. 2 8. The random process X t has an autocorrelation function RXX 18 1 4 cos12 . Find E[ X t ] and E[ X 2 t ]. 2 6 2 Answer: Given RXX 18 1 4 cos12 2 6 2 E X 2 t RXX 0 2 18 [1 4 cos 0] 60 2 59 18 [1 4] 6 3 Removing the periodic components of RXX , then x2 lim RXX 2 lim18 6 2 2 18 lim 6 2 18 0 18 Mean x E X t 18 9. Define cross correlation function and state any two of its properties. Answer: If the process X t and Y t are jointly wide sense stationary, then E X t Y t is a function of , denoted by RXY . This function RXY is called the cross correlation function of the process X t and Y t . Properties of cross correlation function are: i. RXY RYX . ii. If the process X t and Y t are orthogonal, then RXY 0. iii. If the process X t and Y t are independent, then RXY E X t E Y t . 106 ------------------------------------------------------------------------------------------------------------------------------------------------ 10. Define power spectral density function of stationary random processes X t . Answer: If X t is a stationary process with autocorrelation function R , then the Fourier transform of R is called the power spectral density function of X t and denoted as S or S XX . i.e. S R e i d. 11. Define cross spectral density. Answer: If X t and Y t are two jointly stationary random processes with cross correlation function RXY , then the Fourier transform of RXY is called the cross spectral density of X t and Y t and denoted as S XY . i.e. S XY R eXY i d. 12. State and prove any one of the properties of the cross spectral density function. Answer: Cross spectral density function is not an even function of , but it has a symmetry relationship. i.e. SYX S XY Proof: S XY R eXY i d S XY R e d XY i Putting u when , u d du when , u S XY RXY u e iu du S XY R u e YX iu du RXY RYX R e i YX d SYX i.e. SYX SYX 107 ------------------------------------------------------------------------------------------------------------------------------------------------ 13. Find the power spectral density of a random signal with autocorrelation function e. Answer: Given RXX e S R e XX i d e e i d e cos i sin d e cos d i e sin d 2 e cos d (Since the first integrand is even 0 and the second integral is odd) 2 e cos sin 2 2 0 2 0 2 1 0 2 2 S 2 2 14. The autocorrelation function of the random telegraph signal process is given by R a 2e 2 . Determine the power density spectrum of the random telegraph signal. Answer: Given R a 2e 2 S R e XX i d a 2e 2 e i d a2 e 2 cos i sin d a2 e 2 cos d ia 2 e 2 sin d 2a 2 e 2 cos d (Since the first integrand is even 0 and 108 ------------------------------------------------------------------------------------------------------------------------------------------------ the second integral is odd) 2 2a 2 e 2 cos sin 2 2 2 0 2a 2 0 2 1 2 0 4 2 4 S 2 4 2 15. Find the power spectral density of a WSS process with autocorrelation function R e . 2 Answer: Given R e 2 S R e i d e e i d 2 i 2 e d i i i 2 2 2 e d 2 2 i 2 2 e 2 4 d 2 e i 2 2 e 4 e 2 d i dx Put x d dx d 2 When , x When , x 2 S dx e x2 e 4 2 4 e e x2 dx i.e. S XY R e XY i d 2 4 e 2 4 e 109 ------------------------------------------------------------------------------------------------------------------------------------------------ 16. IF the power spectral density of a WSS process is give b a , a by S a. 0 , a Answer: R S e 1 i d 2 1 a a S e i d S e i d S ei d 2 a a 1 b a a e d i 2 a a a b a cos i sin d 2a a a a b a cos d i b a sin d 2a a 2a a a 2 a cos d i 0 b b 2a 0 2a a b a cos d a 0 a sin cos a b a 0 2 b cos a 1 0 0 2 a 2 b 1 cos a 2 a 2 R 1 cos a . b a 2 17. The power spectral density function of a zero mean wide sense 1 ; 0 stationary process X t is given by S . Find R . 0 ; Elsewhere Answer: R S ei d 1 2 0 0 S e d S e d S e d 1 i i i 2 0 0 1 0 i 1.e d 2 0 110 ------------------------------------------------------------------------------------------------------------------------------------------------ 0 cos i sin d 1 2 0 0 0 cos d i sin d 1 1 2 0 2 0 1 0 2 cos d i 0 [ The 1st integrand is 1 2 0 2 even and the 2nd is odd] 1 sin 0 0 1 sin 0 0 sin 0 R . 18. The power spectral density of the random process X t is given ; 1 by S . Find its autocorrelation function. 0 ; Elsewhere Answer: R S e 1 i d 2 1 1 1 S e d S e d S e d i i i 2 1 1 1 1 .e d i 2 1 1 cos i sin d 1 2 1 1 1 1 cos d i 1 sin d 2 1 2 1 1 2 cos d i 0 [ The 1st integrand is 1 1 2 0 2 even and the 2nd is odd] sin 1 0 sin 0 1 sin R . 111 ------------------------------------------------------------------------------------------------------------------------------------------------ Given the power spectral density S XX 1 19. , find the average 4 2 power of the process. Answer: R S e 1 i d 2 1 1 2 4 2 ei d 1 1 2 4 z 2 eiz dz [Where C is the closed contour consisting of the real axis from R to R and the upper half of the circle z R ] eiz 2i lim z 2i 1 2 z 2 i z 2i z 2i ei.2i i 2i 2i e 2 i 4i e 2 R 4 e0 1 Average power R0 4 4 112 ------------------------------------------------------------------------------------------------------------------------------------------------ PART – B 1. If X t is a WSS process with autocorrelation function RXX and if Y t X t a X t a . Show that RYY 2 RXX RXX 2a RXX 2a . Answer: Given Y t X t a X t a RYY t E Y t Y t E X t a X t a X t a X t a E[ X t a X t a X t a X t a X t a X t a X t a X t a E X t a X t a E X t a X t a E X t a X t a a a E X t a X t a a a E X t a X t a E X t a X t a E X t a X t a 2a E X t a X t a 2a E X t a X t a E X t a X t a E X t a X t a 2a E X t a X t a 2a RXX RXX RXX 2a RXX 2a RYY 2 RXX RXX 2a RXX 2a . 2. A stationary random process X t has autocorrelation function given 24 2 36 by RXX . Find the mean and variance of X t . 6 2 4 Answer: 24 2 36 Given RXX 6 2 4 x2 lim R 24 2 36 lim 6 4 2 2 36 24 2 lim 2 4 6 2 24 0 4 60 Mean x E X t 2 113 ------------------------------------------------------------------------------------------------------------------------------------------------ E X 2 t RXX 0 240 36 60 4 36 9 4 Variance E X 2 t E X t 2 9 2 9 4 5. 2 3. State the properties of autocorrelation function for a WSS process. Answer: i. R is an even function of . i.e. RXX RXX ii. R is maximum at 0. i.e. R R 0 iii. If the autocorrelation function R of a real stationary function X t is continuous at 0 , it is continuous at every other point. iv. If R is the autocorrelation function of a stationary process X t with no periodic component, then lim R x2 , provided the limit exists. 4. Given a stationary random process X t 10 cos100t where , followed uniform distribution. Find the autocorrelation function of the process. Answer: Given is uniformly distributed in , , the PDF of is f 1 1 , . 2 RXX E X t X t RXX E10 cos100t .10 cos100t RXX 100 E cos100t cos100t 100 100 cos100t cos100t 100 f d 100 cos100t cos100t 100 1 d 2 100 1 2 cos100t cos100t 100 d 2 2 100 cos100t 100t 100 cos100t 100t 100 d 4 25 cos200t 100 2 d cos100d 114 ------------------------------------------------------------------------------------------------------------------------------------------------ 25 sin 200t 100 2 cos100 d 2 25 sin 200t 100 2 sin 200t 100 2 cos100 2 sin200t 100 cos 2 cos200t 100 sin 2 25 sin200t 100 cos 2 cos200t 100 sin 2 cos100 2 25 2 cos100 RXX 50 cos100. 5. Consider two random processes X t 3 cost and Y t 2 cost where and is uniformly distributed random variable 2 over 0,2 . Verify whether RXX RXX 0 RYY 0 . Answer: Given is uniformly distributed in 0,2 , the PDF of is f 1 1 ,0 2. 2 X t 3 cost and Y t 2 cos t 2 RXX 0 E X t 2 2 9 cos 2 t f d 0 1 cos 2t 1 2 9 d 0 2 2 2 2 9 d cos2t 2 d 4 0 0 9 2 sin 2t 2 2 0 4 2 0 2 0 2 sin 2t 4 sin 2t 0 9 1 4 2 2 sin 2t cos 4 cos 2t sin 4 sin 2t 9 1 4 2 2 sin 2t sin 2t 9 1 4 1 9 2 2 0 4 2 2 9 9 4 115 ------------------------------------------------------------------------------------------------------------------------------------------------ RYY 0 E Y 2 t 2 4 cos 2 t f d 0 2 1 cos 2 t 2 4 2 1 d 2 2 0 2 2 4 d cos2t 2 d 4 0 0 1 2 sin 2t 2 2 0 2 0 1 2 0 1 sin 2t 4 sin 2t 2 1 2 0 1 sin2t sin2t 2 1 2 sin 2t cos3 cos2t sin 3 sin 2t cos cos2t sin 1 2 1 2 sin 2t sin 2t 1 2 1 1 1 2 0 2 2 2 RXX 0 RYY 0 .2 9 9 2 RXX 0 RYY 0 3 RXY E X t Y t 2 3 cost 2 cos t f d 0 2 2 1 6 cost cos t d 0 2 2 2 2 cost cos t d 31 20 2 2 3 2 cost t 2 cost t 2 d 0 2 2 3 cos 2t 2 d cos d 2 0 2 20 116 ------------------------------------------------------------------------------------------------------------------------------------------------ 2 sin 2t 2 3 2 cos 0 2 2 2 2 0 1 sin 2t 4 sin 2t cos 2 0 3 2 2 2 2 2 1 7 sin 2t sin 2t cos 2 3 2 2 2 2 2 1 7 sin 2t sin 2t cos cos sin sin 2 3 2 2 2 2 2 2 7 7 1 sin2t cos 2 cos2t sin 2 3 0 sin 2 2 2 sin2t cos cos2t sin 2 2 3 1 cos2t cos2t 2 sin 2 2 3 1 3 0 2 sin 2 sin 3sin 2 2 2 RXY 3 sin 3 sin i.e. 3 3 sin Since the function takes the maximum and minimum values to be 1 to -1, 3 3 sin . Hence RXX 0 RYY 0 RXY . 6. The autocorrelation function for a stationary process X t is given by RXX 9 2e . Find the mean value of the random 2 variable Y X t dt and variance of X t . 0 Answer: Given RXX 9 2e. x2 lim RXX lim 9 2e 9 20 9 x E X t 3 2 E Y E X t dt 0 2 3dt 3t 0 32 0 6 2 0 Mean of Y E Y 6 117 ------------------------------------------------------------------------------------------------------------------------------------------------ 2 2 R d 2 EY XX 2 2 9 2e d 2 2 d 2 2 2 9 2e 0 2 2 2 9 2e d 0 2 2 14 4e 9 2e d 0 2 2 214 4e 9 2 e e 2 0 2 18.2 4e 2 9 2 2e 2 e 2 0 4 0 20 1 22 2 2 36 4e 18 2 3e 2 2 2 220 2e 40 4e 2 2 E Y E Y 2 Variance of Y 2 40 4e 2 62 4e 2 4 4e 3 1. 7. If X t 5 cost and Y t 2 cost where is a constant and is a random variable uniformly distributed in 0,2 , 2 find RXX , RYY , RXY and RYX . Verify two properties of autocorrelation function and cross correlation function. Answer: Given is uniformly distributed in 0,2 , the PDF of is f 1 1 ,0 2. 2 X t 3 cost and Y t 2 cos t 2 RXX E X t X t RXX E 5 sin t 5 sin t 2 5 sin t 5 sin t f d 0 2 25 sin t sin t 1 d 0 2 2 2 sin t sin t d 25 1 2 2 0 118 ------------------------------------------------------------------------------------------------------------------------------------------------ 2 cost t cost t d 25 4 0 2 cos cos2t 2 d 25 4 0 25 2 2 cos d cos2t 2 d 4 0 0 sin 2t 2 2 25 cos 0 2 4 2 0 25 cos 2 0 sin 2t 4 sin 2t 1 4 2 25 1 sin 2t cos 4 cos2t sin 4 2 cos 4 2 sin 2t 25 2 cos sin 2t sin 2t 1 4 2 25 1 2 cos 0 4 2 RXX 25 2 cos 25 cos 4 2 RYY E Y t Y t RYY E2 cost 2 cos t RYY E 2 cos t 2 cos t 2 2 2 2 cos t 2 cos t f d 0 2 2 2 1 4 cost cos t d 0 2 2 2 2 4 2 cost 2 cost 2 d 0 2 sin t sin t d 2 [ cos cos ] 0 2 2 2 sin t sin t d 21 2 0 2 cost t cost t d 1 0 2 cos cos2t 2 d 1 0 119 ------------------------------------------------------------------------------------------------------------------------------------------------ 2 2 1 cos d cos2t 2 d 0 0 sin 2t 2 2 1 cos 0 2 2 0 1 2 cos sin 2t 4 sin 2t 1 2 1 2 cos sin 2t sin 2t 1 2 1 1 2 cos 0 2 2 cos 1 RYY 2 cos RXY E X t Y t RXY E 5 sin t 2 cos t 2 10 E sin t cos t 2 10 E sin t sin t 2 10 sin t sin t f d 0 2 2 sin t sin t d 10 1 2 0 2 2 cost t cost t d 5 2 0 2 cos 2 cos2t d 5 2 0 2 2 5 cos 2 d cos2t d 2 0 0 5 sin 2 2 cos2t 0 2 2 2 0 1 2 sin 4 sin 0 2 cos2t 5 2 1 2 sin sin 2 cos2t 5 2 5 2 cos2t 2 120 ------------------------------------------------------------------------------------------------------------------------------------------------ RXY 5 cos2t RYX E Y t X t RYX E 2 cos t 5 sin t 2 10 E cos t sin t 2 10 E sin t sin t 2 10 sin t sin t f d 0 2 2 sin t sin t d 10 1 2 0 2 2 cost t cost t d 5 2 0 2 cos 2 cos2t d 5 2 0 5 2 2 cos 2 d cos2t d 2 0 0 5 sin 2 2 cos2t 0 2 2 2 0 5 1 sin 4 sin 0 2 cos2t 2 2 5 1 sin sin 2 cos2t 2 2 2 cos2t 5 2 RYX 5 cos2t RXX cos cos RXX 25 25 2 2 RXX RXX (1) RXX 0 cos 0 25 25 2 2 RXX 25 cos 25 2 RXX RXX 0 (2) 8. Define power spectral density and cross spectral density of a random process. State their properties. 121 ------------------------------------------------------------------------------------------------------------------------------------------------ Answer: Power spectral density: If X t is a stationary process with the autocorrelation function R , then the Fourier transform of R is called the power spectral density function of X t and denoted as S XX . i.e. S XX R e i d. Properties of power spectral density function: i. The value of the spectral density function at zero frequency is equal to the total area under the graph of the autocorrelation function. ii. The mean square value of a wide sense stationary process is equal to the total area under the graph of the spectral density. iii. The spectral density function of a real random process is an even function. iv. The spectral density of a process X t , real or complex is a real function of and nonnegative. v. The spectral density and the autocorrelation function of a real WSS process form a Fourier cosine transform pair. Cross spectral density: If X t and Y t are two jointly stationary random processes with cross correlation function RXY , then the Fourier transform of RXY is called the cross spectral density of X t and Y t and denoted as S XY . i.e. S XY R e XY i d Properties of cross spectral density function: i. S XY SYX ii. ReS XY and ReSYX are even functions of iii. ImS XY and ImSYX are odd functions of iv. S XY 0 and SYX 0 if X t and y t are orthogonal. v. If X t and y t are uncorrelated, then S XY SYX 2E X E Y S . 9. State and prove Wiener-Khinchine theorem. Answer: Statement: If X T is the Fourier transform of the truncated X t , for t T random process defined as X T where X t is a real 0 , for t T WSS process with power spectral density function S , then S lim 1 T 2T E X T . 2 122 ------------------------------------------------------------------------------------------------------------------------------------------------ Proof: Given X T X t eT it dt T X t e it dt [ X t is real] T X T X T X T 2 T T X t e dt1 X t2 eit 2 dt2 it1 1