Determinants Assignment PDF
Document Details
Uploaded by EliteTheory
Tags
Related
Summary
This document is an assignment on determinants, covering various topics such as evaluating determinants, finding cofactors, properties of determinants, and more.
Full Transcript
1 4. Determinants 1 MARK 1. Evaluate a ib c id. c id a ib 2 3 5 2. Find the cofactor of a12 in the following: 6 0 4....
1 4. Determinants 1 MARK 1. Evaluate a ib c id. c id a ib 2 3 5 2. Find the cofactor of a12 in the following: 6 0 4. 1 5 7 3. Evaluate sin 300 cos 300 sin 600 cos 600. a11 a12 a13 4. Given determinant a 21 a 22 a 23 , Find the value of a11A 21 a12 A 22 a13A 23 Where a 31 c32 a 33 Aij is cofactor of element a ij. 1 2 5. Find the value of p, such that the matrix is singular. 4 p 2 3 8 3a 6. If A= ,KA= find a ,b, c and K. ans=a=-4,b=-10,c=0,K=4 5 0 2b c 7. Given I2. Find |I2|. Also find |3I2|. 8. Find the value of x, such that the points (0, 2), (x, 1) and (3, 1) are collinear. 9. If for matrix A, |A| = 3, find |5A|, Where matrix A is of order 2x2 x y 10. If points (2,0), (0, 5) and (x, y) are collinear, then show that 1. 2 5 11. If A=diag.[3, −5,7] B=diag.[−1,2,4] find 3A+4B. ans.= diag.[5, −7,37] 12. Give an example of two nonzero matrices A and B of order 2×2 such that AB=O. 13. Write the equation on using elementary row operation 𝑅 → 𝑅 + 2𝑅 in the given 5 7 1 2 1 1 19 25 7 6 1 1 matrix equation ans= 7 9 3 2 2 3 7 9 3 2 2 3 14. A is a non-singular matrix of order 3 and |A|= - 4. Find |adj A|. 15. Given a square matix A of order 3 × 3, such that |A| = 12, find the value of |A. adj A|. 2x 5 3 16. If =0. Find x 5x 2 9 k 2 17. For what value of k, the matrix. has no inverse ? 3 4 Manju Bala 8383001236 Pawan Gupta 9999102886 2 2 3 4 18. Write the value of the determinant 5 6 8. 6x 9x 12x 19. Find the cofactor of the element of first row and second column (a12 ) in the following 2 3 5 determinant 6 0 4 1 5 7 20. If A is a square matrix of order 3 and | 3A | k | A |, then write the value of k. 1 2 21. If A= ,then find K if |2𝐴|=K|𝐴| ans=4 4 2 1 2 3 2 3 4 3 5 7 22. If 4 6 8 4 6 8 x y z.find x and u. ans= x=4 ,u=5 5 1 3 5 1 3 u v w 23. What positive value of x makes the following pair of determinant equal? 2x 3 16 3 , 5 x 5 2 2 1 24. Write the adjoint of the following matrix . 4 3 4 8 6 2 4 3 25. Evaluate 1 1 2 1 1 2 ans:0 5 1 2 10 2 4 26. What is the value of the following determinant ? 4 a bc 4 b ca 4 c ab 5 x x 1 27. For what value of x, the matrix is singular? 2 4 28. If A and B are square matrices of same order 3,such that |𝐴|=2 and AB=2I.write the value of |𝐵|. Ans:1 2 5 29. Write A-1 for A = . 1 3 cos150 sin150 30. Evaluate. sin 750 cos 750 Manju Bala 8383001236 Pawan Gupta 9999102886 3 sin cos 31. If A= be a singular matrix, find the value of when 𝜖[0,2𝜋] cos sin 3 5 7 ans: , , , 4 4 4 4 1 2 32. If A= find |𝐴 |,without actually find 𝐴 ans 0 3 2 3 33. If A -1 , write A in terms of A. 5 2 x x 3 4 34. If , write the positive value of x. 1 x 1 2 35. Let A be a square matrix of order 3 × 3. Write the value of |2A|, where |A|=4. 36. Let A be a square matrix of order 3 × 3 and |𝑎𝑑𝑗 𝐴|=361,find |𝐴|. Ans:±19 102 18 36 37. Write the value of the determinant 1 3 4. 17 3 6 2 1 3 38. Determine the invertibility of the matrix 3 4 1 ans. Not invertible. 3 2 5 39. Using determinants,for what value of k,the following equations have a unique solution? 2x-7y=21 5x+ky=7 ans. k≠ − x 1 x 1 4 1 40. If then write the value of x. x 3 x 2 1 3 1 2 2 x 41. Find x, if . 4 8 x 4 4 1 0 42. Give 2 1 4 , find (i) minor of an element a23 (ii) cofactor of an element a23. 1 0 3 43. Area of a triangle with vertices (k,0), (1, 1) and (0,3) is 5 square units, Find the values (s) of k. a11 a12 a13 44. Given determinant a 21 a 22 a 23 , Find the value of a11A 21 a12 A 22 a13A 23 Where a 31 c32 a 33 Aij is cofactor of element a ij. 1 2 45. Find the value of p, such that the matrix is singular. 4 p 46. Given I2. Find |I2|. Also find |3I2|. Manju Bala 8383001236 Pawan Gupta 9999102886 4 3 3 47. If the matrix A= and 𝐴 =𝜆A,then evaluate 𝜆. Ans: 𝜆=6 3 3 48. Find the value of x, such that the points (0, 2), (1, x) and (3, 1) are collinear. 49. If for matrix A, |A| = 3, find |5A|, Where matrix A is of order 2x2. x y 50. If points (2, 0), (0, 5) and (x, y) are collinear, then show that 1. 2 5 51. A is a non-singular matrix of order 3 and |A|= - 4. Find |adj A|. 52. Let A= 𝑎 is a matrix of order 2x2 such that |A| =-15 and 𝑐 represents the cofactor of 𝑎 ,then find 𝑎 𝑐 + 𝑎 𝑐. Ans :-15 53. Given a square matrix A of order 3 × 3, such that |A| = 12, find the value of |A. adj A|. 1 a bc 54. Using properties of determinants, prove that 1 b c a 0. 1 c ab cosec2 cot 2 1 55. Without expanding. show that cot cosec 1 0 2 2 42 40 2 2 3 x 3 56. Find value of x, if . 4 5 2x 5 57. If |𝐴𝑑𝑗 𝐴|=64 where A is a 3× 3 matrix find |𝐴|𝑎𝑛𝑑 |2𝐴| ANS. |𝐴| =±8,. |2𝐴| =±64 58. If A and are the matrices of order 3 and |𝐴| =5,and |𝐵| = 3,then find |3𝐴𝐵| ans.405 59. Find equation of line joining (1, 2) and (3, 6) using determinants. 3 y 3 2 60. Let , find the possible values of x, y N. Also find the values, if x = y. x 1 4 1 61. Show that the point A (a, b + c), B (b, c + a) and C (c, a + b) are collinear. 62. If the value of a third order determinant is 12,then find the value of the determinant formed by replacing each element by its cofactor. Ans 144 x2 x 1 x 1 63. Evaluate the determinant ans x 3 x 2 2 x 1 x 1 x y yz zx 64. Write the value of the determinant z x y ans = 0 3 3 3 4 3k 3 65. Show that the matrix is never singular matrix,for any k. 1 2k 2 cos sin 66. If A= ,then for any natural number n,find the value of Det(𝐴 ). Ans=1for n∈ sin cos 𝑁 Manju Bala 8383001236 Pawan Gupta 9999102886 5 2x 5 6 5 67. If , then find x. 8 x 8 3 1 x x2 1 1 1 68. If 1 y y 2 , 1 yz zx xy , then prove that 1 0. 1 z z2 x y z x p q 69. Show that p x q ( x p) ( x 2 px 2q2 ) q q x 0 ba ca 70. If a b 0 c b , then show that is equal to zero. ac bc 0 71. Prove that (A 1 ) / (A / )1 , where A is an invertible matrix. Choose the correct answer from the given four options in each of the Examples 10 and 11. Ax x2 1 A B C 2 72. Let By y 1 and 1 x y z , then Cz z 2 1 zy zx xy (A) 1 (B) 1 (C) 1 0 (D) None of these cos x sin x 1 73. If x , y R , then the determinant sin x cos x 1 lies in the interval cos ( x y ) sin ( x y ) 0 (A) 2 , 2 (B) 1, 1 (C) 2 , 1 (D) 1, 2 Fill in the blanks in each of the Examples 12 to 14. sin 2 A cot A 1 2 74. If A, B, C are the angles of a triangle, then sin B cot B 1 …………….. 2 sin C cot C 1 23 3 5 5 75. The determinant 15 46 5 10 is equal to ……………………. 3 115 15 5 sin 2 23 sin 2 67 cos180 76. The value of the determinant sin 67 sin 23 cos 2 180 ………………….. 2 2 cos180 sin 2 23 sin 2 67 2x 5 6 2 77. If , then value of x is 8 x 7 3 (A) 3 (B) 3 (C) 6 (D) 6 Manju Bala 8383001236 Pawan Gupta 9999102886 6 2 3 78. If A 0 2 5 , then A 1 exists if 1 1 3 (A) 2 (B) 2 (C) 2 (D) None of these 79. If A and B are invertible matrices, then which of the following is not correct? (B) d et (A)1 d et (A) 1 (A) adj A | A| A 1 (C) (AB)1 B1A 1 (D) (A B)1 B1 A 1 1 2 5 80. There are two values of a which makes determinant, 2 a 1 86, then sum of 0 4 2a these number is (A) 4 (B) 5 (C) –4 (D) 9 Fill in the blanks in each of the Exercises 71 —81. 81. If A is a matrix of order 3 × 3, then |3 A|= ___________. 82. If A is invertible matrix of order 3 × 3, then | A 1 | ___________ 2x 2 x 2 x 2 x 2 2 1 3x 3 x 3 x 3 x 2 2 83. If x, y, z R, then the value of determinant 1 is equal to 4 x 4 x 4 x 4 x 2 2 1 ___________ 2 0 cos sin 84. If cos 2 0, then cos sin 0 ___________ sin 0 cos 85. If A is a matrix of order 3 × 3, then (A 2 )1 ___________. 86. If A is a matrix of order 3 × 3, then number of minors in determinant of A are ___________. 87. The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ___________. (1 x )17 (1 x )19 (1 x )23 88. If f ( x ) (1 x )23 (1 x )29 (1 x )34 A B x Cx 2 then A = ____________. (1 x )41 (1 x )43 (1 x )47 State True or False for the statements of the following Exercises: A3 1 3 89. A 1 , where A is a square matrix and | A| 0. 90. | A 1 | | A| 1 , where A is non-singular matrix. 91. If A and B are matrices of order 3 and |A| = 5, |B| = 3, then | 3 AB| 27 5 3 405. Manju Bala 8383001236 Pawan Gupta 9999102886 7 92. If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144. x 1 x 2 xa 93. x 2 x3 x b 0, , where a, b, c are in A.P. x 3 x 4 x c 94. |adj A| = |𝐴| , where A is a square matrix of order 2 sin A cos A sin A cos B 95. The determinant sin B cos A sin B cos B is equal to zero. sin C cos A sin C cos B x a pu l f 96. If the determinant y b q v m g splits into exactly K determinants of order 3, each zc rw nh element of which contains only one term, then the value of K is 8. a p x px a x a p 97. Let b q y 16, then 1 q y by b q 32. c r z rz cz cr 1 1 1 1 98. The maximum value of 1 (1 sin ) 1 is. 2 1 1 1 cos 1. 𝑎 + 𝑏 − 𝑐 − 𝑑 2. 46 3. 1 4. 0 5. 8 6. a=-4,b=-10,c=0,K=4 7. 9 8. x=3 9. 75 10. 11. diag. 12. 19 25 7 6 1 1 [5, −7,37] 13. 7 9 3 2 2 3 14. 16 15. 1728 16. X=-13 17. K= 18. 0 19. 𝐴 =46 20. K=27 21. K=4 22. X=4,u=5 23. X=±4 3 1 25. 0 24. 4 2 26. 0 27. X=3 28. 1 3 5 29. 𝐴 = 1 2 Manju Bala 8383001236 Pawan Gupta 9999102886 8 30. 0 3 5 7 32. 33. 𝐴 = A 31. , , , 4 4 4 4 34. X=2 35. 32 36. ±19 37. 0 38. Not invertible. 39. k≠ − 40. x=2 41. x=±2√2 42. 43. K= or - 44. 0 45. P=-8 46. 9 47. 𝜆=6 48. x= 49. 75 50. 51. 16 52. -15 53. 1728 54. 55. 56. X=2 57. ±64 58. 59. 60. 61. 62. 144 63. x 3 x 2 2 64. 0 65. 66. 1for n∈ 𝑁 67. X=±3 68. 69. 70. 71. 72. C 73. A 74. 0 75. 0 76. 0 77. C 78. D 79. D 80. C 81. 27|𝐴| 82. 1 83. 0 84. 85. A 1 2 86. 9 87. VALUE OF THE 88. 0 89. True,since DETERMINANT. A n 1 A 1 n Where n𝜖𝑁 90. FALSE SINCE 91. TRUE 92. TRUE 93. TRUE 1 A1 A 94. false 95. 0 96. true 97. true 98. true 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. Manju Bala 8383001236 Pawan Gupta 9999102886