CSE 353: Computer Vision Lecture Notes Fall 24 PDF

Summary

These lecture notes cover Computer Vision, specifically focusing on features and corner detection using the Harris corner detector. The material likely includes mathematical concepts, algorithms, and practical examples for image processing.

Full Transcript

CSE 353: Computer Vision Fall 24 1 Lec 5- Features Harris Corner Detector 2 Contents Why extract features? Characteristics of good features Corner Detection Basic Idea Math Interpreting the second moment matrix...

CSE 353: Computer Vision Fall 24 1 Lec 5- Features Harris Corner Detector 2 Contents Why extract features? Characteristics of good features Corner Detection Basic Idea Math Interpreting the second moment matrix Interpreting the eigenvalues Corner response function Harris detector: Steps Other corners 3 Why extract features? Motivation: panorama stitching We have two images – how do we combine them? Why extract features? Motivation: panorama stitching We have two images – how do we combine them? Step 1: extract features Step 2: match features Step 2: match features Why extract features? Motivation: panorama stitching We have two images – how do we combine them? Step 1: extract features Step 2: match features Step 3: align images Characteristics of good features Repeatability/precision The same feature can be found in several images despite geometric and photometric transformations Saliency/matchability Each feature is distinctive Compactness and efficiency Many fewer features than image pixels Locality A feature occupies a relatively small area of the image; robust to clutter and occlusion Applications Feature points are used for: Image alignment 3D reconstruction Motion tracking Robot navigation Indexing and database retrieval Object recognition Finding Corners Key property: in the region around a corner, image gradient has two or more dominant directions Corners are repeatable and distinctive C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings of the 4th Alvey Vision Conference, 1988 : pages 147-- 151. Corner Detection: Basic Idea We should easily recognize the point by looking through a small window Shifting a window in any direction should give a large change in intensity “flat” region: “edge”: “corner”: no change in no change along significant change all directions the edge direction in all directions Corner Detection: Math Change in appearance of window w(x,y) for the shift [u,v]: E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y Window Shifted Intensity function intensity Window function w(x,y) = or 1 in window, 0 Gaussian outside Source: R. Szeliski Corner Detection: Math Change in appearance of window w(x,y) for the shift [u,v]: E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y I(x, y) E(u, v) E(0,0) w(x, y) slide: S. Lazebnik Corner Detection: Math Change in appearance of window w(x,y) for the shift [u,v]: E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y I(x, y) E(u, v) E(3,2) w(x, y) slide: S. Lazebnik Corner Detection: Math Change in appearance of window w(x,y) for the shift [u,v]: E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y We want to find out how this function behaves for small shifts E(u, v) Corner Detection: Math Change in appearance of window w(x,y) for the shift [u,v]: E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y We want to find out how this function behaves for small shifts Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order Taylor expansion: slide: S. Lazebnik Corner Detection: Math E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y Second-order Taylor expansion of E(u,v) about (0,0): Eu (u, v)   2w( x, y )I ( x  u, y  v)  I ( x, y )I x ( x  u, y  v) x, y Euu (u, v)   2w( x, y )I x ( x  u, y  v) I x ( x  u, y  v) x, y   2w( x, y )I ( x  u, y  v)  I ( x, y )I xx ( x  u, y  v) x, y Euv (u, v)   2w( x, y )I y ( x  u, y  v) I x ( x  u, y  v) x, y   2w( x, y )I ( x  u, y  v)  I ( x, y )I xy ( x  u, y  v) x, y Corner Detection: Math E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y Second-order Taylor expansion of E(u,v) about (0,0):  Eu (0,0) 1  Euu (0,0) Euv (0,0) u  E (u, v)  E (0,0)  [u v]   [u v]  v   v E ( 0,0)  2  uv E (0,0) Evv ( 0,0)   E (0,0)  0 Eu (0,0)  0 Ev (0,0)  0 Euu (0,0)   2 w( x, y )I x ( x, y ) I x ( x, y ) x, y E vv (0,0)   2 w( x, y )I y ( x, y ) I y ( x, y ) x, y Euv (0,0)   2 w( x, y )I x ( x, y ) I y ( x, y ) x, y slide: S. Lazebnik Corner Detection: Math E (u, v)   w( x, y )  I ( x  u, y  v)  I ( x, y )  2 x, y  Eu (0,0) 1  Euu (0,0) Euv (0,0) u  E (0,0)  0 E (u, v)  E (0,0)  [u v]   [u v]  v  Eu (0,0)  0  v E ( 0,0)  2  uv E (0,0) Evv ( 0,0)   Ev (0,0)  0 Euu (0,0)   2 w( x, y )I x ( x, y ) I x ( x, y ) x, y E vv (0,0)   2 w( x, y )I y ( x, y ) I y ( x, y ) x, y Euv (0,0)   2 w( x, y )I x ( x, y ) I y ( x, y ) x, y Second-order Taylor expansion of E(u,v) about (0,0):    w( x, y) I x2 ( x, y )  w( x, y) I ( x, y) I ( x, y) u  x y E (u, v)  [u v] x, y x, y  w( x, y ) I x ( x, y ) I y ( x, y)  w( x, y) I ( x, y)  v  2 y x, y x, y  Corner Detection: Math The quadratic approximation simplifies to u  E (u, v)  [u v] M   v  where M is a second moment matrix computed from image derivatives:  I x2 IxI y  M   w( x, y )  2  x, y  I x I y I y  slide: S. Lazebnik Interpreting the second moment matrix The surface E(u,v) is locally approximated by a quadratic form. Let’s try to understand its shape. u  E (u, v)  [u v] M   v   I x2 IxI y  M   w( x, y )  2  x, y  I x I y I y  slide: S. Lazebnik Interpreting the second moment matrix Consider a horizontal “slice” of E(u, v): This is the equation of an ellipse. u  u  E (u, v)  [u v] M   v  [u v] M    const v   I x2 IxI y  M   w( x, y )  2  x, y  I x I y I y  slide: S. Lazebnik Interpreting the second moment matrix First, consider the axis-aligned case (gradients are either horizontal or vertical)  I 2 I x I y  1 0  M   w( x, y )  x 2    x, y  I x I y I y   0 2  If either λ is close to 0, then this is not a corner, so look for locations where both are large. slide: S. Lazebnik Interpreting the second moment matrix Consider a horizontal “slice” of E(u, v): E (u, v)  [u v] M u v  This is the equation of an ellipse: λ1 u + λ2 v = K 2 2   1 0 1 Diagonalization of M: M R   R  0 2  The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R direction of the fastest change direction of the slowest change (max)-1/2 (min)-1/2 slide: S. Lazebnik Interpreting the eigenvalues Classification of image points using eigenvalues of M: 2 “Edge” 2 >> 1 “Corner” 1 and 2 are large,  1 ~  2; E increases in all directions 1 and 2 are small; E is almost constant in “Edge” “Flat” all directions 1 >> 2 region 1 slide: S. Lazebnik Corner response function R  det( M )   trace (M )  12   (1  2 ) 2 2 α: constant (0.04 to 0.06) “Edge” R0 R is negative with large magnitude for an edge |R| is small for a flat region |R| small “Flat” “Edge” region Rthreshol d slide: S. Lazebnik Harris Detector: Steps Take only the points of local maxima of R slide: S. Lazebnik Harris Detector: Steps slide: S. Lazebnik Other corners Questions 33

Use Quizgecko on...
Browser
Browser