Cours M1 Evolution Phenols - Perception Sensorielle (Tanins, Anthocyanes, Quercetine) PDF
Document Details
Uploaded by GoldCongas6423
Université de Bordeaux
Pierre-Louis Teissdre
Tags
Related
- Manila Young Sommelier 2024 Wine Theory Quiz Reviewer PDF
- Wine Regions of the World II Past Paper PDF 2024
- Wine Vintages - Course Outline PDF
- Guía de Estudio 10: La Madurez Fenólica (Otoño 2024) - PDF
- Beyond Flavour Wine Tasting by Structure PDF
- Planeación Dídactica: Club del Vino y Destilados PDF
Summary
This document is a presentation on wine phenolics, including their contribution to color, sensorial effects, bacteriostatic effects, and stabilization effects. It covers topics including extraction, specific interactions, and polymerization. Contains chemical diagrams and structures.
Full Transcript
06/10/2022 Polyhenols of grapes and wines : quality , stability , evolution, and sensory aspects Pierre-Louis TEISSEDRE Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, EA 4577 - USC 1366 Œnologie INRA 1 WINE PHENOL...
06/10/2022 Polyhenols of grapes and wines : quality , stability , evolution, and sensory aspects Pierre-Louis TEISSEDRE Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, EA 4577 - USC 1366 Œnologie INRA 1 WINE PHENOLICS COMPOUNDS ➔ CONTRIBUTION TO COLOR ➔ - Extraction : Temperature/Ethanol ➔ SENSORIAL EFFECTS ➔ - Reductive Compounds ➔ BACTERIOSTATIC EFFECTS H2M HL Oenoccocus oeni ➔ STABILISATION EFFECTS - Proteins (stabilisation) / Laccase ( effect-against) 2 1 06/10/2022 OH OH OH HO OH OH HO O Tanins R HO OH HO O 4 OH OH OH OO O R 8 HO O HO R HO R1 OH 6 Families O OO O 4 OH R2 HO 4 OH HO O O OH OH OH O OH HO 8 OH HO O R HO HO OH OH OH HO OH Hydrolysable tannins Tannins Polymers Hydrolysables Condensed Tanins Tanins (WOOD) (GRAPES) Seeds/Stems/Skins Oak, Chesnut, Quebracho , nut de galle ProanthocyanidicTanins Gallotanins Ellagitanins O OH HO O-C OH HO HO COOH O HO OH HO HO OH C-O OH OH O Gallic Ac. Ellagic Ac. flavan-3 ols Esters of phenols acids (gallic or ellagic) and sugars in H+ and hot medium--> anthocyanidol 3 Condensed tannins and wine H H OH OH OH OH HO O HO O OH OH HO O H OH OH OH H H OH OH OH OH Catechin Epicatechin EpigalloCatechin H (skin only) OH OH OH HO O OH HO O OH H O H O O OH O OH OH OH HO OH HO OH Epicatechin gallate Epigallocatechin gallate (seed mainly) Presence in wine? Defining characteristics of tannin: polymerization degree In wine, about 5 g/L of tannin, DPm 7 Baiano, A.; Terracone, C.; Gambacorta, G.; La Notte, E., Phenolic content and antioxidant activity of primitivo wine: Comparison among winemaking technologies. Journal of Food Science 2009, 74, Sarni-Manchado, P.; Cheynier, V., Study of non-covalent complexation between catechin derivatives and peptides by electrospray ionization mass spectrometry. Journal of Mass Spectrometry 2002, 37, (6), 609-616. 4 2 06/10/2022 Astringency and bitterness : ➔ Bitterness, a taste Lea et Arnold, 1978 ; Gacon et al., 1998 Bitter compounds Interaction semi- Bitterness specific Salted Acid tongue Taste Receptors (e.g. : Sweet GPCRs) ➔Astringency, a tactile sensation Bate-Smith, 1954 ; Breslin et al., 1993 › Interaction tanins- salivary proteins (PRPs, mucins, histatins...) Formation by precipitation Reduction of salivation and increase in mouth frictions › Diffuse Sensation creating dryness in buccal cavity 5 Influence of Polyphenols on Astringency and Bitterness ➔ Astringency and Bitterness of (-)-epicatechin can reach maxima intensities upper and more persistant that those of (+)-catechin. Mean maximum intensity of astringency (top) and bitterness (bottom) (n =18 judges, 2 reps). Mean maximum intensities of Mean values of intensity astringency (hatched) over time for astringency and bitterness (solid) (top) and bitterness by molecular size (bottom) (n =18 judges 2 reps (n =18 judges2 reps). n compounds, n =2 for monomer and trimer and n =3 for dimer). Peleg, 1999 ➔ The more the concentrations of flavan-3-ols increase, the more maximum intensity and perception duration for bitterness and astringency are increase. ➔ Procyanidins fractions having a DPm > to 20 and solubilized in an hydro-alcoholic solution have been felt as astringent (Vidal, 2003). 6 3 06/10/2022 Sensory Approach : Tanins astringency 10 9 Ethanol pH Acide tartrique Astringecy Intensity average 8 7 6 5 4 3 2 1 0 0% 7% 11% 15% 2,5 3,0 3,5 4,0 0 g/L 2 g/L 4 g/L 6 g/L Fontoin, H., Saucier C., Teissedre PL., Glories Y. Effect of pH, Ethanol and Acidity on Astringency and Bitterness of Grape Seed Tannin Oligomers in Model Wine Solution. Food Qual. Prefer.2008, 19, 286-291. 7 Influence of matrix parameters medium on bitterness perception 10 9 8 Ethanol pH Tartaric acid Intensités moyennes amertume 7 ' 6 5 Fontoin, H., Saucier C., 4 Teissedre PL., Glories Y. 3 Food Qual. Prefer.2008, 2 19, 286-291. d 1 0 0% 7% 11% 15% 2,5 3,0 3,5 4,0 0 g/L 2 g/L 4 g/L 6 g/L Tanins Bitterness Ethanol Bitterness pH no influence Tartaric Acid Bitterness 8 4 06/10/2022 COMPOSITION AND TANNIC PERCEPTION (SEEDS, SKINS) BY VARIETY (CS ET M) OF GRAPES BERRIES FOR 3 VINTAGES (2006, 2007, 2008) Tannin Composition CS M DPm = 2.2 to 8.8 DPm = 2.0 to 3.6 % G = 11.0 to 51.3 % G = 4.1 to 48.7 Tannin Perception CS and M Astringency Bitterness Soil Vintage And Soil Tanin Composition : Tannin Perception : CS M CS and M mDP = 7.8 to 48.8 mDP = 4.3 to 35.4 Astringency Bitterness % G = 1.4 to 9.4 % G = 0.2 to 2.3 % P = 2.5 to 29.3 % P = 0.6 to 14 Vintage And Soil Soil Chira, K., Schmauch, G., Saucier, C., Fabre, S., Teissedre, P.-L., Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from Bordeaux wine grapes (cabernet Sauvignon and merlot) for two consecutive vintages (2006 and 2007), 2009, Journal of Agricultural and Food Chemistry 57 (2), pp. 545-553 9 CORRELATION BETWEEN SENSORY AND CHEMICAL DATA DPM ( CS ET M) FOR WINES OF DIFFERENT VINTAGES ( PAUILLAC CS , POMMEROL M). Corrélation between DPm and astringency Cabernet-Sauvignon MerlotMerlot Variation of astringency intensity (Average) in function of DPm Correlation between astringency and DPm Tanins quality characterization grapes/wines (new compounds in grapes) Chira, K., Pacella, N., Jourdes, M., Teissedre, P.-L.Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age (2011) Food Chemistry, 126 (4), pp. 1971-1977. Chira, K., Jourdes, M., Teissedre, P.-L.Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage (2012) European Food Research and Technology, 234 (2), pp. 253-261. 10 5 06/10/2022 RESULTS: CORRELATIONS BETWEEN CHEMICAL AND SENSORY ANALYSIS Correlation Between mDP And Astringency Intensity 6 M CS 2 2 Y(M) = -0.001 X + 0.58X + 1.51 (R = 0.780, p = 0.000) 2 2 5 Y(CS) = -0.04X + 0.56X + 2.27 (R = 0.509, p = 0.051) intensity Intensity 4 Mean astringency 3 Mean 2 1 1 2 3 4 5 6 7 8 9 mDP mDP Scale Pattern Between Astringency And Mean Degree Of Polymerization (mDP) for CS and M Wines 1.8 2.0 2.4 2.9 4.0 7.6 mDP 1.9 2.3 7.1 CS 2.9 3.3 3.7 4.0 4.2 Astringency 2.6 3.0 3.5 4.8 Intensity soft mellow slight astringency tannic mDP 1.3 2.1 2.5 3.4 3.0 Chira, K., Pacella, N., Jourdes, M., Teissedre, P.- M 2.9 3.2 L. Chem ical and sensory evaluation of Bordeaux Astringency 2.2 2.9 3.4 wines (Cabernet-Sauvignon and M erlot) and Intensity correlation with wine age (2011) Food Chem istry, 126 (4), pp. 1971-1977. soft mellow slight astringency 11 RESULTS: VINTAGE INFLUENCE (SENSORY ANALYSIS ) Astringency Vintage effect CS wines M wines Mean Intensity Astringency + + Bitterness / / Variables are presented according to influence (p ≤ 0.05), significantly (+), no significantly (/) Vintage Effect Only On Astringency Intensity For Both Varieties Vintage Bitterness Mean Intensity Chira, K., Pacella, N., Jourdes, M., Teissedre, P.-L. Chem ical and sensory evaluation of Bordeaux wines (Cabernet- Bitterness M Bitterness CS Sauvignon and M erlot) and correlation with wine age (2011) Food Chem istry, 126 a shows no significant differences (p > 0.05) (4), pp. 1971-1977. 12 6 06/10/2022 Oligomeric Tannins A) D) X A B E) X=A- B W. Ma, P. Téguo- Waffo, M. Jourdes, H. Li and P. Teissedre, PLOS ONE | DOI:10.1371journal.p one.0161095 August B) C) 12, 2016 Pentamers Tetramers Trimers Dimers Monomers 13 Galloylated tannins P.L. Teissedre , ISVV- June, 6, 2018 13 Oligomeric Tannins Concentration of oligomeric tannins in filtrates with/without salivary protein interaction (* indicates “not detected”) 0,5 Concentration (mg/mL) 0,4 Beforeprotein Without interaction with proteins 0,3 After With interaction protein with proteins 0,2 0,1 * 0 Monomers Dimers Trimers Tetramers Pentamers Wen Ma, Pierre Waffo-Téguo, Micheal Jourdes, Hua Li and Pierre-Louis Teissedre, Chemical affinity between tannin polymerization degree and salivary protein binding abilities: implications for wine astringency, PLoS ONE 2016, 11(8): e0161095. 14 6 octobre 2022 P.L. Teissedre , ISVV-June, 6, 2018 14 7 06/10/2022 Phenolics in Bordeaux and Rioja Wines SAMPLES BORDEAUX (85 samples) LA RIOJA (100 samples) Time in barrel 12 months Time in barrel: 3 different times: Time in bottle: 2-8 years 12 months = DOCa Crianza (25 samples) 24 months = DOCa Reserva (25 samples) Zones: 4 and generics wines 36 months = DOCa Gran Reserva (25 samples) Wood barrel type: French oak Blayais & Time in bottle: 1-8 years Bourgeais Libournais Zones: 3 Medoc Wood barrel type: ≥ 70% American Oak Rioja Alavesa Graves Rioja Alta Generics OA Rioja Baja Bordeaux 15 Molecular anthocyanin contents Distribution according to subregions 85,00 (mg/L équivalent Mv3G) 75,00 65,00 Concentration 55,00 45,00 35,00 25,00 15,00 5,00 x is oc s sa lta is a ve au aj na ya éd ve A B ra de la ur la M G B or A bo B Li “Bordeaux specific” Rioja “Bordeaux generic” ü Higher acetylated anthocyanins than Rioja ü Higher p-coumaroylated à Cabernet Sauvignon anthocyanins than Bordeaux specific à Tempranillo, Graciano Quaglieri, C., Prieto-Perea, N., Berrueta, L.A., Gallo, B., Rasines-Perea, Z., Jourdes, M., Teissedre, P.-L. Comparison of aquitaine and Rioja red wines: Characterization of their phenolic composition and evolution from 2000 to 2013 (2017) Molecules, 22 (2), art. no. 192 16 8 06/10/2022 Anthocyanin-derived pigment contents 2,00 1,80 VitB Concentration (mg/L equ. 1,60 1,40 Cat-Mv3G 1,20 VitA Mv3cmG 1,00 Mv3G) Rioja 0,80 Mv3G-4viny lg uaïacol 0,60 “Bordeaux speci5ic” “Bordeaux generic” 0,40 Mv3G-4viny lcatechol 0,20 Mv3G-4viny lphenol 0,00 VitA sa es lta ja is oc x ais au Ba na e v éd A ay lav ra e ur M rd Bl G A bo Bo Li Vitisin A content for Aquitaine Vitisin A content for Rioja wines 0, 90 wines 0,90 0, 80 0,80 0, 70 (mg/L equ. Mv3G) 0,70 (mg/L equ. Mv3G) Concentration 0, 60 Concentration 0,60 0, 50 0,50 0, 40 0,40 0, 30 0,30 0, 20 0,20 0, 10 0,10 0, 00 0,00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 09 08 07 06 05 04 03 02 01 09 08 07 06 05 04 03 02 Quaglieri, C., Prieto-Perea, N., Berrueta, L.A., Gallo, B., Rasines-Perea, Z., Jourdes, M., Teissedre, P.-L. Comparison of aquitaine and Rioja red wines: Characterization of their phenolic composition and evolution from 2000 to 2013 (2017) Molecules, 22 (2), art. no. 192 17 Tannin contents Distribution of low-molecular flavan-3-ols according to subregions 20 0 Rioja area and “Bordeaux generic” ü Alavesa:18Tempranillo 0 ü Bordeaux: 16 0 Merlot (mg/L equ. (+)-catechin 14 0 C1 Concentration 12 0 B3 10 0 B1 80 (-) -ep icat 60 (+ )-cat 40 20 0 ta ja ux a is oc s es “Bordeaux specific” ai es Ba na Al av éd ea ay av r Gr M rd Bl ou Al ü Cabernet Sauvignon, richer in Bo b Li low-molecular tannins Quaglieri, C., Prieto-Perea, N., Berrueta, L.A., Gallo, B., Rasines-Perea, Z., Jourdes, M., Teissedre, P.-L. Comparison of aquitaine and Rioja red wines: Characterization of their phenolic composition and evolution from 2000 to 2013 (2017) Molecules, 22 (2), art. no. 192 18 9 06/10/2022 Mean degree of polymerization mDP: distribution by region mDP: distribution by vintage 4,80 4,90 4,30 4,40 3,80 3,90 3,30 3,40 2,80 2,90 2,30 2,40 1,90 Li Bl M Bo G Ba A A ra lta la bo ay is éd rd ja ve ve ai ur oc ea 20 20 20 20 20 20 20 19 sa s s na ux 13 11 09 07 05 03 01 94 mDP - details of Rioja wine types 4,20 3,70 mDP values 3,20 2,70 G Re Ci Jo ra r ve se an n n rv … za a Quaglieri, C., Prieto-Perea, N., Berrueta, L.A., Gallo, B., Rasines-Perea, Z., Jourdes, M., Teissedre, P.-L. Comparison of aquitaine and Rioja red wines: Characterization of their phenolic composition and evolution from 2000 to 2013 (2017) Molecules, 22 (2), art. no. 192 19 Distribution of all samples among dimensions 1 and 2 of the PCA “Tannin component” “Pigment component” Quaglieri, C., Prieto-Perea, N., Berrueta, L.A., Gallo, B., Rasines-Perea, Z., Jourdes, M., Teissedre, P.-L. Comparison of aquitaine and Rioja red wines: Characterization of their phenolic composition and evolution from 2000 to 2013 (2017) Molecules, 22 (2), art. no. 192 20 10 06/10/2022 Astringency and bitterness : ➔ Bitterness, a taste Lea et Arnold, 1978 ; Gacon et al., 1998 Bi#er compounds Interaction semi- Bitterness specific Salted Acid tongue Taste Receptors (e.g. : Sweet GPCRs) ➔Astringency, a tactile sensation Bate-Smith, 1954 ; Breslin et al., 1993 › Interaction tanins- salivary proteins (PRPs, mucins, histatins...) Formation by precipitation Reduction of salivation and increase in mouth frictions › Diffuse Sensation creating dryness in buccal cavity 21 Sensory Approach : Tanins astringency 10 9 Ethanol pH Acide tartrique Astringecy Intensity average 8 7 6 5 4 3 2 1 0 0% 7% 11% 15% 2,5 3,0 3,5 4,0 0 g/L 2 g/L 4 g/L 6 g/L Fontoin, H., Saucier C., Teissedre PL., Glories Y. Effect of pH, Ethanol and Acidity on Astringency and Bitterness of Grape Seed Tannin Oligomers in Model Wine Solution. Food Qual. Prefer.2008, 19, 286-291. 22 11 06/10/2022 Influence of matrix parameters medium on bitterness perception 10 9 8 Ethanol pH Tartaric acid Intensités moyennes amertume 7 ' 6 5 Fontoin, H., Saucier C., 4 Teissedre PL., Glories Y. 3 Food Qual. Prefer.2008, 2 19, 286-291. d 1 0 0% 7% 11% 15% 2,5 3,0 3,5 4,0 0 g/L 2 g/L 4 g/L 6 g/L Tanins Bitterness Ethanol Bitterness pH no influence Tartaric Acid Bitterness 23 Reactivity of tannins O H - O - O H - O H - H O - - O H H O O H O - O H O H - - O H Depends of available - H O O H O - - O H - O H - O H charges to molecules O H H O O - O H O H - - - O H - surface O H O - H O - O H O H O H Proteins Oxidized Combinated Form Charges + Forms or Polymerized OH - O H - OH - O H - O O - O H O O - O H - OH - - O H O H - HO OH O OH - H O O O H O - - OH - O H O H - H O O H O -- O H OH O OH O - - OH - OH - - O H O H OH O - O H - -- O O H O O HO - Interactions with others compounds ? H O O O H - - O H - OH O H O O O - H O OH - O H O H OH O H OH 24 12 06/10/2022 Wine in-mouth properties Taste Bitterness Tannins Sweetness Wine matrix Other Acidity compounds Astringency Mouthfeel In-mouth sensations and wine Complex balance quality Glucosid e Coumaroylated Red wine color Grape Anthocyanins Acetylated 25 Grape anthocyanins: not just color? Red wine in-mouth sensations Reduction of tannins astringency by condensation reactions Anthocyanins State-of-the-art Eliciting bitterness receptors (Soares et al., 2013) l., Formation of complexes with salivary proteins (Ferrer-Gallego et al., 2015) Evoking in sensory analyisis astringency attributes as dry, rough, chalk, fullness, grippy, persistent or bitter Are anthocyanins involved (Vidal et al., 2004a,b,c; Oberholster et al., 2009, Gonzalo-Diago et al., 2014; Ferrer-Gallego et in wine in-mouth sensation? al., 2015) 26 13 06/10/2022 Method Grape skins cv. Nebbiolo and Barbera Extraction in MeOH 0.1% TFA Purification with XAD 16 resin Anthocyanin Lyophilization extraction Total anthocyanin extract (TA) Glucoside fraction (GF) Acetylated fraction (AF) Coumaroylated fraction (CF) CPC (Renault et al., 1997) fractionation PREP HPLC Comparison between a sample Protein with buffer with saliva or without precipitation (Schwarze and Hofmann, 2006) analysis Best estimated thresholds (BET) 3-AFC - three alternative forced-choice Sensory and Triangle test In-mouth descriptors analysis Check-all-that-apply (CATA