Chemical Bonding and Molecular Structure Class Notes PDF
Document Details
Uploaded by HumorousPascal
Tags
Summary
These notes explain chemical bonding and molecular structure, focusing on ionic and covalent bonds, Lewis structures, and formal charges. They include examples and diagrams of various molecules and ions.
Full Transcript
# Chemical Bonding and Molecular Structure ## **Date: / /** ## **Page: / /** ### L.O:- To study about chemical bonds and draw Lewis structures. ## Bond ### Ionic 1. **Ionic bond:** Transfer of a valance electron from one element to another. (Mostly Metal to Non-Metal) ### G.N Lewis Structure 1...
# Chemical Bonding and Molecular Structure ## **Date: / /** ## **Page: / /** ### L.O:- To study about chemical bonds and draw Lewis structures. ## Bond ### Ionic 1. **Ionic bond:** Transfer of a valance electron from one element to another. (Mostly Metal to Non-Metal) ### G.N Lewis Structure 1. **Na-11 2,8,1** > $Na \rightarrow Na^+ + e^-$ > $Cl + e^- \rightarrow Cl^-$ 2. **Mg-12 2,8,2** > $Mg \rightarrow Mg^{2+} + 2e^-$ > $O + 2e^- \rightarrow O^{2-}$ 3. **K-19 2,8,8,1** > $K \rightarrow K^+ + e^-$ > $Cl + e^- \rightarrow Cl^-$ 4. **Ca-20 2,8,8,2** > $Ca \rightarrow Ca^{2+} + 2e^-$ > $2Cl + 2e^- \rightarrow 2Cl^-$ 5. **Na-11 2,8,1** > $Na + Na + O \rightarrow (Na)_2O$ > $O-8 2,6$ ### Covalent **Covalent bond:** Sharing of valance electrons between two atoms to become an octet. #### $Cl_2$ - 2,8,7 > $Cl \: : Cl$ > **Single covalent bond** 1. **$H_2$ - 1** > $ H-H$ 2. **$O_2$ - 2,6** > $O=O$ > **Double covalent bond** 3. **$N_2$ - 2,5** > $N \equiv N$ 4. **$CH_4$** > $C-2,4$ > $H-1$ > $H$ > $H-C-H$ > $H$ 5. **$CHCl_3$** > $C-2,4$ > $H-1$ > $Cl-2,8,7$ > > $Cl$ > $Cl-C-Cl$ > $Cl$ > $H$ ## Lewis Structures 1. **Hydronium ions** - $H_3O^+$ * **Step 1:** Calculation of total valence electrons > $H + 3 + 6 - 1 = 8$ * **Step 2:** Draw the skeletal structure > $H$ > $H-O-H$ > $H$ * **Step 3:** Subtract Bond pair electrons from Total valence electrons > $8 - 6 = 2$ > $H$ > $\ddot{O}$ > $|$ > $H$ > $H$ > $lone \: pair$ 2. **Ammonium ions** - $NH_4^+$ * **Step 1:** $5 + 4 - 1 = 8$ * **Step 2:** > $H$ > $H-N-H$ > $H$ * **Step 3:** $8 - 8 = 0$ > $H$ > $H-N-H$ > $H$ 3. **Carbonate ions** - $CO_3^{2-}$ * **Step 1:** $4 + 18 + 2 = 24$ * **Step 2:** > $O$ > $|\:\:\:\:\:\:\:\:\:\:$ > $O-C-O$ * **Step 3:** $24 - 6 - 18$ > $O$ > $||$ > $O-C-O$ ## **Date: / /** ## **Page: / /** 4. **Nitrate ions** - $NO_3^-$ * **Step 1:** $5 + 18 + 1 = 24$ * **Step 2:** > $O$ > $| \:\:\:\:\:\:\:\:\:\:\:$ > $O-N-O$ * **Step 3:** $24 - 6 = 18$ > $O$ > $| \:\:\:\:\:\:\:\:\:\:\:$ > $O-N-O$ 5. **Nitrite ions** - $NO_2^-$ * **Step 1:** $5 + 12 + 1 = 18$ * **Step 2:** $O-N-O$ * **Step 3:** $18 - 4 = 14$ > $O$ > $| \:\:\:\:\:\:\:\:\:\:\:$ > $O-N-O$ 6. **Ozone ion** - $O_3$ * **Step 1:** $6 x 3 = 18$ * **Step 2:** $O-O-O$ * **Step 3:** $18 - 4 = 14$ ## **Date: / /** ## **Page: / /** ### L.O: To calculate formal charge. The individual charge present on each atom is called formal charge. **Formal Charge = V.E. - L.P. - 1/2 (B.P)** 1. **Hydronium ion:** $H_3O^+$ > $H - 1 - 0 - 1 x 2 = 1 - 1 = 0 $ > $H_2 = 0$ > $H_3 = 0$ > $O = 6 - 2 - 1 x 6 / 2 = 6 - 5 = 1$ > $F.C = 1$ 2. **Ammonium ion:** $NH_4^+$ > $N = 5 + 0 - 1 x 8 / 2 = 5 - 4 = 1$ > $H_1 - 1 - 0 - 1 x 2 / 2 = 1 - 1 = 0$ > $H_2 = 0$ > $H_3 = 0$ > $H_4 = 0$ > $F.C = 1$ ## **Date: / /** ## **Page: / /** 3. **Carbonate ion:** $CO_3^{2-}$ > $C = 4 - 0 - 1 x 8/2 = 4 - 4 = 0$ > $O_1 = 6 - 4 - 1 x 4 / 2 = 6 - 6 = 0$ > $O_2 = 6 - 6 - 1 x 2/2 = 0 - 1 = -1$ > $O_3 = 6 - 6 - 1 x 2 / 2 = 0 - 1 = -1$ > $F.C = -2$ 4. **Nitrate ion:** $NO_3^-$ > $N = 5 - 0 - 1 x 8 / 2 = 5 - 4 = 1$ > $O_1 = 6 - 4 - 1 x 4 / 2 = 6 - 6 = 0$ > $O_2 = 6 - 6 - 1 x 2 /2 = 0 - 1 = -1$ > $O_3 = 6 - 6 - 1 x 2 / 2 = 0 - 1 = -1$ > $F.C. = -1$ 5. **Nitrite ion:** $NO_2^-$ > $N = 5 - 2 - 1 x 8 / 3 = 5 - 5 = 0$ > $O_1 = 6 - 4 - 1 x 4 / 2 = 6 - 6 = 0$ > $O_2 = 6 - 6 - 1 x 2 / 2 = 0 - 1 = -1$ ## **Date: / /** ## **Page: / /** 6. **Ozone ion: Os** > $O_1 = 6 - 2 - 1 x 6 / 2 = 1$ > $O_2 = 6 - 6 - 1 x 2 / 2 = -1$ > $O_3 = 0$ > $F.C = -1$ **Hydronium ion** + $H_3O^+$ > $H-O-H$ > **Both e from same atom: Coordinate Bond** **Ammonium ion** + $NH_4$ > $H-N-H$ > **Both e from same atom: Coordinate Bond** **Carbonate ion** $CO_3^{2-}$ > $O$ > $| \:\:\:\:\:\:\:\:\:\:\:$ > $O-C-O$ ## **Date: / /** ## **Page: / /** **Nitrate ion** $NO_3^-$ > $O$ > $| \:\:\:\:\:\:\:\:\:\:\:$ > $O-N-O$ > **Coordinate Bond** **Nitrite ion** $NO_2^-$ > $O-N-O$ **Ozone ion** $O_3$ > $O-O-O$ > **Coordinate Bond** ### NCERT Questions: 4.1 to 4.4 4.1 A chemical bond is a force of attraction between atoms. Bonds form when atoms share or transfer valance electrons. 4.2: Mg, Na, N, Br 4.3: >$ S, Al, Al, H, H$ 4.4 $H_2S$ > **Step 1:** $2 + 6 = 8$ > **Step 2:** $H-S-H$ > **Step 3:** $8 - 4 - 4 \rightarrow H-S-H$ ## **Date: / /** ## **Page: / /** #### $SiCl_4$ > **Step 1:** $4 + 4 x 7 = 4 + 21 = 25$ > **Step 2:** $Cl$ > $Cl-Si-Cl$ > $Cl$ > **Step 3:** $25 - 8 = 17$ > $Cl$ > $Cl-Si-Cl$ > $Cl$ #### $CO_3^{2-}$ > **Step 1:** $4 + 18 + 2 = 24$ > **Step 2:** $O$ > $||$ > $O-C-O$ > **Step 3:** $24 - 6 = 18$ > $O$ > $||$ > $O-C-O$ ## **Date: / /** ## **Page: / /** #### $HCOOH$ > $H - C - O - H$ > $O$ 4.5 **Octet rule** states that every atom tends to have eight, valence in its outermost shell. It successfully explain the formation of chemical bonds and determine stability. It cannot be applied to non-metals after silicon as they can expand their octet. ## Bond Parameters ### L.O: To understand octet rule. **Octet rule** is defined as achievement of stability by having 8 e in the outermost shell. There are limitations as well which do not follow octet rule. 1. **En: NO** $5 + 6 = 11 - 2 = 9$ > * $N = O $ > * $odd e$ 2. **NO** $5 + 12 = 17 - 4 = 13$ > * $O-N-O$ ## **Date: / /** ## **Page: / /** 3. **$BF_3$** $3 + 7(3) \rightarrow 24 - 6 = 18$ > $F-B-F$ > $F$ 4. **$BeF_2$** $ 2 + 7(2) = 16 - 4 = 12$ > $F-Be-F$ > $F$ 5. **$PCl_5$** > $Cl$ > $Cl-P-Cl$ > $Cl$ > $Cl$ >> $5 + 7(5) = 40 - 10 = 30$ ### L.O:- To understand Bond Parameters. **Bond Parameters** | Bond Length | Bond Energy | Bond Angle | Bond Order | |---|---|---|---| | $O-O$ | Break bond between 2 atoms | $F-Be-F$ | $H - H$ | | | | | $N \equiv N$ | | | | | $O = O$ | | | | | Bond order | ## **Date: / /** ## **Page: / /** ### L.O: To understand the phenomena of resonance. When a single Lewis structure cannot describe a molecule accurately there more number of structures are drawn with similar energy. A hybrid structure is obtained which explains the molecule accurately. This phenomena is called resonance. **Ozone:** > $O$ > $O$ > $O$ > * ova single bond > * double bond $O \longleftrightarrow O \longleftrightarrow O$ **Carbonate:** > $O - C - O$ > $O = C = O$ > $O - C - O$ **Nitrate:** > $O-N-O$ > $O-N=O$ > $O-N=O$ ## **Date: / /** ## **Page: / /** ### L.O: To understand Polarity of Bonds. **Polarity of Bonds** mean covalent compounds can still have partial ionic character because of the difference in electronegativity. In case of HF, F being highly electronegative attracts the shared pair of electrons to itself and hence acquires partial negative charge and H acquires partial positive charge which creates dipole between them. > $ H-F$ > **Covalent Bond** > **(Polar Covalent Bond)** > $ H-Cl$ > $H-Cl$ **Q. Why is the dipole movement of $BeF_2$ and $BCl_3$ zero?** **A.** In $BeF_2$, due to the linear structure the two dipoles cancel out each other in the opposite direction making the resultant dipole movement zero. > $F-Be-F$ > $Cl$ > $Cl - B - Cl$ > $Cl$ **Resultant Dipole Movement comes out to be zero.** ## **Date: / /** ## **Page: / /** Draw the arrows for dipole movement for: 1. **$NH_3$** > $N \rightarrow H$ > $H$ > $H$ 2. **$NF_3$** > $ F \leftarrow N \rightarrow F$ > $F$ **Q. Why is the dipole movement of $NH_3$ greater than $NF_3$ ?** The dipole movement of $NH_3$ is greater than $NF_3$ because the movement of $N$ in $NH_3$ is upwards, however the movements in $NF_3$ are in opposite directions which cancels out the movements. Hence dipole movement of $NH_3 > NF_3$. ### L.O:- To draw structure of molecules based on VSEPR theory. **VSEPR Theory:** VSEPR stands for Valence Shell Electron Pair Repulsion. Sidgwick and Powell in 1940 proposed a simpler theory based on repulsion of electron pairs of the valence shell. It helps to determine the shape of the molecule as these pair of e- will occupy such positions so as to have minimum repulsion and maximum distance b/w them. ## **Date: / /** ## **Page: / /** For example: 1. **$BeF_2$** $ 2 + 2(7) = 16 = 2$ > $F-Be-F$ > * 180° > * Linear 2. **$BF_3$** $3 + 3(7) = 24 = 3$ > $F-B-F$ > $F$ > * 120° > * Trigonal Planar 3. **$CH_4$** $4 + 4(1) = 8 = 4$ > $H - C-H$ > $H$ > * 109.5° > * Tetrahedral 4. **$PCl_5$** $5 + 5 (7) = 40 = 5$ > $Cl-P-Cl$ > $Cl$ > $Cl$ > * Trigonal BiPlanar There are 2 bonds in $PCl_5$, Axial and Equatorial. The bond angle between 3 equatorial is 120° and the bond angle between 2 axial is 180° and the bond angle between axial and equatorial is 90°. 5. **$SF_6$** $6 + 6(7) = 48 = 6$ > $F$ > $S-F$ > $F$ > $F$ > $F$ > * 90° > * Octahedral 6. **$H_2O$** $2 + 6 = 2 + 6 = 4$ > $H-O-H$ > * Tetrahedral (Geometry) > * V shape/Bent ## **Date: / /** ## **Page: / /** 7. **$H_2S$** $ 2 x 1 + 6 = 8 = 4$ > $H-S-H$ > * Tetrahedral (Geometry) > * V shape/Bent 8. **$NH_3$** $5 + 3 x 1 = 8 = 4$ > $H-N-H$ > $H$ > * Tetrahedral (Geometry) > * Trigonal Pyramidal 9. **$PH_3$** (phosphine) $5 + 3 x 1 = 8 = 4$ > $H-P-H$ > $H$ > * Tetrahedral (Geometry) > * Trigonal Pyramidal 10. **$ClF_3$** $7 + 3(7) = 28 = 5$ > $F-Cl-F$ > $F$ > * TBP (Geometry) > * T shape 11. **$XeF_4$** $8 + 4 (7) = 8 + 28 = 36 = 6$ > $F$ > $F-Xe - F$ > $F$ > * Octahedral (Geometry) > * Square planar ## **Date: / /** ## **Page: / /** 12. **$BrF_5$** $7 + 5(7) = 42 = 6$ > $F$ > $F-Br-F$ > $F$ > $F$ > $F $ > * Octahedral (Geometry) > * Square Pyramidal 13. **$XeF_2$** $8 + 14 = 22 = 5$ > $F-Xe-F$ > * TBP (Geometry) > * Linear *Note: L.P occupy equatorial position* 14. **$SF_4$** $6 + 28 = 34 = 5$ > $F-S-F$ > $F$ > * TBP (Geometry) > * Seesaw ## **Date: / /** ## **Page: / /** 12/10/2024 **L.O: To understand the formation of chemical bond from VBT (Valence Bond Theory).** **Valence Bond Theory:** Valence Bond Theory helps understand how a chemical bond is formed by overlapping of orbitals of atomic. This was given by Pauling in 1928. There are 2 types of overlapping. **Sigma Bond (σ)** The axial overlapping of atomic orbitals. > * Head-2-Head > * $8 + 8$ **Pi Bond (π)** The parallel overlapping of atomic orbitals. > * Side-2-Side > * $8 + 8$ **Hybridization:** The intermixing of different atomic orbitals to produce hybrid orbitals of similar energy and shape is called as hybridization. *Number of atomic orbitols = Number of hybrid orbitals* There are different types of hybridization. * **sp** * **sp²** * **sp³** * **sp³d** * **sp³d²** ## **Date: / /** ## **Page: / /** **Examples:** 1. **$BeF_2$** (Central atom: Be (2nd period)) > * E.C = $1s^2 2s^2 2p^0$ > * 2s 2p > $ ↑↓ $ > $ ↑↓ ↑ $ > * Ground state > * 2s 2p > $ ↑ ↑ $ > $ ↑↓ ↑ $ > * Encited state > * 2 A.O combine to produce 2 H.O. > $ + \infty = (11.0)$ > * $(2\ H.O)$ > > * $F = 1s^2 2s^2 2p^5$ 2. **$B Cl_3$** (Central atom: B (2nd period)) > * E.C = $ 1s^2 2s^22p^1$ > * 2s 2p > $ ↑↓ $ > $ ↑ $ > * Ground state > * 2s 2p > $ ↑ $ > $ ↑ ↑ $ > * Encited state > * 3 A.O 3 H.O > * $(1s^2 2s^2 2p^1 3s^2 3p^5)$ > * Total = 3 ## **Date: / /** ## **Page: / /** 3. **$CH_4$** (Central atom: C (2nd period)) > (4+4)-4 > $E.C= 1s^2 2s^2 2p^2$ > * 2s 2p > $ ↑↓ $ > $ ↑↓ ↑ $ > * Ground state > * 2s 2p > $ ↑ $ > $ ↑ ↑ ↑ $ > * Encited state > * $sp^3 \rightarrow 4A.O = 4 \: H.O$ > * $H = 1s^1$ > $H$ > $H - C - H$ > $H$ > $4 - bonds$ > $H$ **Q. Find out hybridization in (a) $PCl_5$ (b) $SF_6$** **(a)** $PCl_5$ (Central atom: P (3rd period)) > $E.C = 1s^2 2s^2 2p^6 3s^2 3p^3$ > * 3s 3p 3d > $ ↑↓ $ > $ ↑↓ ↑ $ > * Ground state > * 3s 3p 3d > $ ↑ $ > $ ↑ ↑ ↑ $ > * Encited state > * $sp^3d \rightarrow 5A.O = 5 \: H.O$ ## **Date: / /** ## **Page: / /** **(b)** $SF_6$ (Central atom: S (3rd period)) > $E.C = 1s^2 2s^2 2p^6 3s^2 3p^4$ > * 3s 3p 3d > $ ↑↓ $ > $ ↑↓ ↑ ↑ $ > * Ground state > * 3s 3p 3d > $ ↑ $ > $ ↑ ↑ ↑ ↑ ↑ $ > * Encited state > * $sp^3d^2 \rightarrow 6A.O = 6 \: H.O$