Nucleic Acids Biochemistry Chapter 1 PDF

Summary

This document provides a detailed overview of nucleic acids, including topics such as DNA and RNA structure, their properties, and functions. It also discusses eukaryotic and prokaryotic genomes, and the central dogma of biology, along with examples and diagrams.

Full Transcript

* By: Dr Nadiawati Alias * * Living  cells  are  highly  complex  and  organized.   * Cells  possess  a  gene4c  program  encoded  in  a  collec4on  of   genes   * Genes  ar...

* By: Dr Nadiawati Alias * * Living  cells  are  highly  complex  and  organized.   * Cells  possess  a  gene4c  program  encoded  in  a  collec4on  of   genes   * Genes  are  more  than  storage  lockers  for  informa4on:   * Cons4tute  the  blueprints  for  cellular  structures   * The  informa4on  carried  by  DNA  is  held  in  the  sequence  of   pieces  of  DNA  called  genes.     DNA  usually  occurs  as  linear  chromosomes  in   eukaryotes,  and  circular  chromosomes  in   prokaryotes.     The  number  or  chromosomes  varies  from  species  to   species.   Fruit  flies  have  a  total  of  8  chromosomes  per  cell   The  set  of  chromosomes  in  a  cell  makes  up  its  genome;   the  human  genome  has  approximately  3  billion  base   pairs  of  DNA  arranged  into  46  chromosomes  per  cell.   * *The  gene4c  informa4on  in  a  genome  is  held  within  genes     * A  gene  is  a  unit  of  heredity  and  is  a  region  of  DNA  that  influences  a   par4cular  characteris4c  in  an  organism.     * Genes  contain  an  open  reading  frame  that  can  be  transcribed,  as  well  as   regulatory  sequences  such  as  promoters  and  enhancers,  which  control   the  expression  of  the  open  reading  frame.   *Genomic  DNA  is  different  between  eukaryo>c  and  prokaryo>c   cell.   Eukaryotes: Prokaryotes: Plants Bacteria Animals Archea Fungi Protozoa * Bacterial  Chromosomes    In  prokaryotes,  the  DNA  is  held  within  an  irregularly  shaped  body  in  the    cytoplasm  called  the  nucleoid    the  nucleoid  (meaning  nucleus-­‐like  and  also  known  as  the  nuclear  region,  nuclear   body  or  chroma>n  body)  is  an  irregularly-­‐shaped  region  within  the  cell  where  the   gene>c  material  is  localized.     Nucleoid  also    is  not  surrounded  by  a  nuclear  membrane  or  separate  cellular   compartment  bounded  by  a  membrane.   The  nucleic  acid  is  a  circular,  double-­‐stranded  piece  of  DNA,          and  mul4ple  copies  may  exist.   Their  genomes  have  no  introns,  less  repe44ve  sequences            then  eukaryo4c  genomes.   * * Bacterial chromosomal DNA – usually circular molecule. * Contains: * origin of replication, * structural gene sequences * some repetitive sequences. * 1. Nucleolus 2. Nucleus 3. Ribosome 4. Vesicle 5. Rough endoplasmic reticulum 6. Golgi apparatus (or "Golgi body") 7. Cytoskeleton 8. Smooth endoplasmic reticulum 9. Mitochondrion 10. Vacuole 11. Cytoplasm 12. Lysosome 13. Centriole http://www.dnai.org/c/index.html * * Genomic  DNA  is  located  in  the  cell  nucleus  of  eukaryotes,  as  well  as  small   amounts  in  mitochondria  and  chloroplasts.     * DNA  is  packed  into  chroma>ns  and  sequestered  within  a  membrane-­‐enclosed   organelle  called  the  nucleus   * It  contains  the  cell's  gene>c  material  (DNA  molecules  complex  with  a  variety  of   proteins)  such  as  histones,  to  form  chromosomes   * The  chromosomes  of  eukaryo>c  cells  are  packages  composed  of  DNA  and   protein.   * This  packaging  must  be  highly  ordered  and  compact  in  order  to  fit  the  huge  DNA   molecules  into  the  cell’s  nucleus.   * Total  length  of  all  DNA  in  human  cell  is  es4mated  at  1-­‐2m     * But  size  of  the  nucleus  is  only  5  µm  in  diameter.   * * to fit into the nucleus of every cell Assembly of a nucleosome, which is formed when eight separate histone protein subunits attach to the DNA molecule. Six nucleosomes are coiled together and these then stack on top of each other. The end result is a fiber of packed nucleosomes known as chromatin. This structure, is then looped and further packaged using other proteins to give the final "chromosomal" shapes. And a typical cell nucleus is so small that ten thousand could fit on the tip of a needle http://www.dnai.org/c/index.html Two chromatids Nucleosome= composed of double-stranded DNA wrapped around an octamer of histone proteins. Chromatin The combined tight loop of core histones Histone DNA nIt is important to realize that chromosomes are not always present, they form only when cells are dividing. * * In many species, only a small fraction of the total sequence of the genome encodes protein. * For example, only about 1.5% of the human genome consists of protein- coding exons, with over 50% of human DNA consisting of non-coding repetitive sequences * However, DNA sequences that do not code protein may still encode functional non-coding RNA molecules, which are involved in the regulation of gene expression * sRNA,  tRNA,  rRNA,  siRNA  etc. * Introns are non-coding sections of a gene, transcribed into precursor mRNA seq but ultimately removed by RNA splicing Exon Intron Exon Exon Intron Exon * *Some  non-­‐coding  DNA  sequences  play  structural  roles  in   chromosomes.     *Telomeres  and  centromeres  typically  contain  few  genes,   but  are  important  for  the  func4on  and  stability  of   chromosomes   *An  abundant  form  of  non-­‐coding  DNA  in  humans  are   pseudogenes,  which  are  copies  of  genes  that  have  lost  their   protein-­‐coding  ability  (due  to  muta>on)  or  no  longer   expressed  in  cell.   * * Stable,  infec4ve  par4cles  composed  of  a  nucleic  acid  (DNA  or  RNA)  and   protein  subunits.   * Vary  in  size,  shape  and  chemical  composi4on.   * Viral  packages-­‐protein  molecules  form  a  protec4ve  shell  around  the  nucleic   acid  core  (capsid).   * In  more  complex  viruses  (T2,  T4),  the  protein  shell  is  coated  with  an   envelope  of  glycoproteins  and  membrane  lipids.   * Rely  on  host  cells  for  replica4on   * Most  viruses  exhibit  a  limited  host  range  –      which  is  the  spectrum  of  host  cell  types  that      a  virus  can  infect.   *   *Many  virus  can  infect  only  specific  types  of  cells  of  one  host   species.   *Virus  with  simple  structure  may  self-­‐assemble  to  make  mature   virus  par4cles.   *Viruses  cannot  exist  independently:   *Parasi4c-­‐  they  survive  by  infec4ng  a  host  cell  and  pira4ng  the   metabolic  machinery  which  is  used  to  form  new  viral   par4cles.   *Each  viral  form  is  usually  specific  for  a  type  of  host  cell.   *Bacteriophages   *Plant  viruses-­‐tobacco  mosaic  virus   *Animal  viruses   * *Bacteriophages/  phages     *Specific  for  bacteria   *Majority  of  phages  are  DNA  viruses   *Their  genome  is  in  the  form  of  DNA   *A  well-­‐studied  phage:     *X174,  which  infects  E.  coli  cells.     *Plant  viruses   *Ex:  Tobacco  mosaic  virus  (TMV)     *Which  infects  the  leaves  of  the  plant   *Contains  single  strand  of  genomic          RNA   *Animal  Viruses   * *Viruses  that  infect  animals   *Although  viruses  infect  all  cellular  life  (animals,  plants,   bacteria),  each  has  their  own  specific  range  of  viruses  that   ocen  infect  only  that  species.     *Some  are  highly  pathogenic  in  humans  (influenza,  human   papilloma  virus,  rotavirus,  mumps  virus,  herpes,  HIV)   * Direct  their  host  cells  to  synthesize  the  enzyme  to  decode  their  gene4c   informa4on.   * Is an explanation of the flow of genetic information within a biological system. First stated by Francis Crick at 1956 * *First  discovered  in  1869  by  Miescher.   *Found  as  a  precipitate  that  formed  when  extracts   from  nuclei  were  treated  with  acid.   *Compound  contained  C,  N,  O,  and  high  amount  of  P.   *Was  an  acid  compound  found  in  nuclei  therefore   named  nucleic  acid.   * *1944  Oswald,  Avery,  Mac  Leod  and  Mc  Carty   demonstrated  that  DNA  is  the  molecule  that   carrier  gene4c  informa4on.     *1953  Watson  and  Crick  proposed  the  double  helix   model  for  the  structure  of  DNA   * *Nucleic  acids  (DNA  or  RNA)-­‐  polymers  of  nucleo4des  linked  in   a  chain  through  phosphodiester  bonds.   *serve  as  informa4on-­‐carrying  molecules  or,  in  the  case  of   some  RNA  molecules,  catalysts.       *Nucleo'de  has  3  chemical  parts:   *An  aroma4c  and  nitrogenous  bases  -­‐either  a  pyrimidine   (one  ring)  or  purine  (two  rings)     *A  5-­‐carbon  carbohydrate  (an  aldopentose)-­‐ribose  or   deoxyribose     *A  phosphate  groups.   * *Nucleo4des  also  exist  in  ac>vated  forms   containing  two  or  three  phosphates,  called   nucleo4de  diphosphates  or  triphosphates.     *If  the  sugar  in  a  nucleo4de  is  deoxyribose,  the   nucleo4de  is  called  a  deoxynucleo'de;  if  the   sugar  is  ribose,  the  term  ribonucleo'de  is  used.     *The  bases  of  nucleo4des  are  planar,  aroma4c,   heterocyclic  molecules  of  either  purine  or  pyrimidine.   Purine Pyrimidine Purine-­‐  form  bonds  to  5-­‐carbon  sugar  (  a  pentose)  via  N9  atoms.    Pyrimidines-­‐    form  bonds  to  pentose  via  N1  atoms.   * RNA DNA * *The combination of a base and sugar is called a nucleoside *Nucleosides are similar to nucleotides but have no phosphate groups. *The linking of a nitrogenous base by β-N-glycosidic linkage to 1 carbon of pentose sugar results in nucleoside. Examples of nucleosides: * Notice the named given for purine and pyrimidine * Abbr. Base Nucleoside Nucleic Acid deoxyadenosine DNA A Adenine adenosine RNA deoxyguanosine DNA G Guanine guanosine RNA deoxycytidine DNA C Cytosine cytidine RNA T Thymine deoxythymidine (thymidine) DNA U Uracil uridine RNA * *  Two  types  of  5-­‐carbon  carbohydrate  are  found  in  the   nucleic  acids.   *Ribose  occurs  in  RNA   *a  monosaccharide  containing  five  carbon  atoms,  and   including  an  aldehyde  func4onal  group  in  its  linear  form.  It   has  the  chemical  formula  C5H10O5.   Β-D-Ribose * *2-­‐deoxyribose  in  DNA   *deriva4ve  of  ribose,  lacks  an  oxygen  atom  at  C2   Β-D-2-Deoxyribose -The  differences  between  D-­‐Ribose  and  D-­‐2-­‐deoxyribose   are-­‐  2'-­‐OH  vs  2'-­‐H       -­‐This  difference  affects  secondary  structure  and  stability       * *Phosphate  ester  of  nucleosides   * Other  Func>ons  of  Nucleo>des   Nucleoside  5'-­‐triphosphates  are  carriers  of  energy     Bases  serve  as  recogni>on  units     Cyclic  nucleo>des  are  signal  molecules  and  regulators  of   cellular  metabolism  and  reproduc>on     ATP  is  central  to  energy  metabolism     GTP  drives  protein  synthesis     CTP  drives  lipid  synthesis     UTP  drives  carbohydrate  metabolism   * *DNA  and  RNA  are  synthesized  in  cells  by  DNA   polymerases  and  RNA  polymerases.   *In  all  cases,  the  process  involves  forming  phosphodiester   bonds  between  the  3'  carbon  of  one  nucleo>de  and  the  5'   carbon  of  another  nucleo>de.     *The  sequence  of  DNA  molecules  is  always  read  in  the  5’   to  3’  direc'on   *This  leads  to  forma>on  of  the  so-­‐called  "sugar-­‐phosphate   backbone",  from  which  the  bases  project.     A key feature of all nucleic acids is that they have two distinctive ends: the 5' (5-prime) and 3' (3-prime) ends. This terminology refers to the 5' and 3' carbons on the sugar. For both DNA (shown above) and RNA, the 5' end bears a phosphate, and the 3' end a hydroxyl group. DNA and RNA polymerases add nucleotides to the 3' end of the previously incorporated base. Another way to put this is that nucleic acids are synthesized in a 5' to 3' direction. * Nucleo>de  monomers  are  joined  by  3’-­‐5’  phosphodiester  linkages  to   form  nucleic  acid  (polynucleo>de)  polymers   * *Most  DNA  exists  in  the  famous  form  of  a  double  helix,  in   which  two  linear  strands  of  DNA  are  wound  around  one   another.     *The  major  force  promo>ng  forma>on  of  this  helix  is   complementary  base  pairing:     *A's  form  hydrogen  bonds  with  T's  (or  U's  in  RNA),  and     *G's  form  hydrogen  bonds  with  C's.     If  we  mix  two  ATGC's  together,  the  following  duplex  will  form:     Examine  the  figure  above  and  note  two  very  important  features:       The  two  strands  of  DNA  are  arranged  an'parallel  to  one  another   G-­‐C  base  pairs  have  3  hydrogen  bonds,    A-­‐T  base  pairs  have  2  hydrogen  bonds:  higher  temperature  is   needed  to  disrupt  GC-­‐rich  DNA  than  AT-­‐rich  DNA.       H bonding  of  adjacent  an4parallel  DNA  strands  form   double  helix  structure   * *Distance  between  the  2  sugar-­‐phosphate  backbones  is  always   the  same,  give  DNA  molecule  a  regular  shape.   *Plane  of  bases  are  oriented  perpendicular  to  backbone   *Hydrophillic  sugar  phosphate  backbone  winds  around  outside  of   helix   *Noncovalent  interac4ons  between  upper  and  lower  surfaces  of   base-­‐pairs  (stacking)  forms  a  closely  packed  hydrophobic   interior.   *Hydrophobic  environment  makes  H-­‐bonding  between  bases   stronger  (no  compe44on  with  water)   *Cause  the  sugar-­‐phosphate  backbone  to  twist.   View  down  the  Double  Helix Hydrophobic     Interior  with  base  pair   Sugar-­‐phosphate   stacking   backbone   *Within  groves,  func>onal   groups  on  the  edge  of  base   pairs  exposed  to  exterior   *involved  in  interac>on  with   proteins.   Factors  stabilizing  DNA  double  Helix *Hydrophobic  interac'ons  –  burying  hydrophobic   purine  and  pyrimidine  rings  in  interior   *Stacking  interac'ons  –  van  der  Waals   interac>ons  between  stacked  bases.   *Hydrogen  Bonding  –  H-­‐bonding  between  bases   *Charge-­‐Charge  Interac'ons  –  Electrosta>c   repulsions  of  nega>vely  charged  phosphate   groups  are  minimized  by  interac>on  with  ca>ons   (e.g.  Mg2+)   *RNA   *Single  stranded  molecule   *Chemically  less  stable  than  DNA   *presence  of  2’-­‐OH  makes  RNA  more  suscep4ble  to   hydroly4c  alack  (especially  form  bases)   *Prone  to  degrada4on  by  Ribonucleases  (Rnases)   *Has  secondary  structure.  Can  form  intrachain  base  pairing   (i.e.cruciform  structures).   *Mul4ple  func4ons   *Type  of  RNA   *Ribosomal  RNA  (rRNA)  –  integral  part  of  ribosomes  (very   abundant)   *Transfer  RNA  (tRNA)  –  carries  ac>vated  amino  acids  to   ribosomes.   *Messenger  RNA  (mRNA)  –  endcodes  sequences  of  amino   acids  in  proteins.   *Cataly'c  RNA  (Ribozymes)  –  catalzye  cleavage  of  specific  RNA   species.   *

Use Quizgecko on...
Browser
Browser