Geometry Chapter 2 Review Outline PDF

Summary

This document outlines key concepts in geometry, specifically covering parallel lines, angles, triangles, and slope. It provides theorems, postulates, formulas, and examples related to these topics.

Full Transcript

‭Name:‬‭____________________‬ ‭Hour:‬‭_____________________‬ ‭Date:‬‭_____________________‬ ‭ eometry‬ G ‭ hapter‬‭2‬‭Review‬‭Outline‬...

‭Name:‬‭____________________‬ ‭Hour:‬‭_____________________‬ ‭Date:‬‭_____________________‬ ‭ eometry‬ G ‭ hapter‬‭2‬‭Review‬‭Outline‬ C ‭1.‬ ‭Parallel‬‭lines‬‭never‬‭intersect‬‭.‬ ‭2.‬ ‭Use‬‭these‬‭theorems‬‭when‬‭you‬‭know‬‭two‬‭lines‬‭are‬‭parallel:‬ ‭a.‬ ‭Same-Side‬‭Interior‬‭Angles‬‭Postulate‬ ‭i.‬ ‭If‬‭lines‬‭are‬‭parallel,‬‭then‬‭same-side‬‭interior‬‭angles‬‭are‬‭supplementary‬‭.‬ ‭b.‬ ‭Alternate‬‭Interior‬‭Angles‬‭Theorem‬ ‭i.‬ ‭If‬‭lines‬‭are‬‭parallel,‬‭then‬‭alternate‬‭interior‬‭angles‬‭are‬‭congruent‬‭.‬ ‭c.‬ ‭Corresponding‬‭Angles‬‭Theorem‬ ‭i.‬ ‭If‬‭lines‬‭are‬‭parallel,‬‭then‬‭corresponding‬‭angles‬‭are‬‭congruent‬‭.‬ ‭d.‬ ‭Alternate‬‭Exterior‬‭Angles‬‭Theorem‬ ‭i.‬ ‭If‬‭lines‬‭are‬‭parallel,‬‭then‬‭alternate‬‭exterior‬‭angles‬‭are‬‭congruent‬‭.‬ ‭3.‬ ‭Use‬‭these‬‭theorems‬‭when‬‭trying‬‭to‬‭prove‬‭lines‬‭are‬‭parallel‬‭(or‬‭make‬‭them‬‭parallel):‬ ‭a.‬ ‭Converse‬‭of‬‭the‬‭Same-Side‬‭Interior‬‭Angles‬‭Postulate‬ ‭i.‬ ‭If‬‭same-side‬‭interior‬‭angles‬‭are‬‭supplementary‬‭,‬‭then‬‭the‬‭lines‬‭are‬‭parallel.‬ ‭b.‬ ‭Converse‬‭of‬‭the‬‭Alternate‬‭Interior‬‭Angles‬‭Theorem‬ ‭i.‬ ‭If‬‭alternate‬‭interior‬‭angles‬‭are‬‭congruent‬‭,‬‭then‬‭the‬‭lines‬‭are‬‭parallel.‬ ‭c.‬ ‭Converse‬‭of‬‭the‬‭Corresponding‬‭Angles‬‭Theorem‬ ‭i.‬ ‭If‬‭corresponding‬‭angles‬‭are‬‭congruent‬‭,‬‭then‬‭the‬‭lines‬‭are‬‭parallel.‬ ‭d.‬ ‭Converse‬‭of‬‭the‬‭Alternate‬‭Exterior‬‭Angles‬‭Theorem‬ ‭i.‬ ‭If‬‭alternate‬‭exterior‬‭angles‬‭are‬‭congruent‬‭,‬‭then‬‭the‬‭lines‬‭are‬‭parallel.‬ ‭4.‬ ‭Triangle‬‭Angle-Sum‬‭Theorem‬ ‭a.‬ ‭The‬‭three‬‭angles‬‭in‬‭a‬‭triangle‬‭add‬‭up‬‭to‬‭180‬‭o‭.‬ ‬ ‭5.‬ ‭Triangle‬‭Exterior‬‭Angles‬‭Theorem‬ ‭a.‬ ‭The‬‭exterior‬‭angle‬‭of‬‭a‬‭triangle‬‭is‬‭equal‬‭to‬‭the‬‭sum‬‭of‬‭the‬‭two‬‭remote‬‭interior‬ ‭angles‬‭.‬ ‭𝑦‬‭2−‭𝑦‭1‬ ‬ ‭6.‬ ‭Slope‬‭formula:‬‭𝑚‬ = ‬ ‭𝑥‭2‬ −‭𝑥‭1‬ ‬ ‬ ‭7.‬ ‭Slope‬‭intercept‬‭form:‬‭𝑦‬ = ‭𝑚𝑥‬ + ‭𝑏‬ ‭8.‬ ‭Point‬‭slope‬‭formula:‬‭𝑦‬ − ‭𝑦‭1‬ ‬ = ‭𝑚‬(‭𝑥‬ − ‭𝑥‭1‬ )‬ ‭9.‬ ‭Use‬‭the‬‭point-slope‬‭formula‬‭when‬‭you‬‭know‬‭the‬‭slope‬‭and‬‭a‬‭point‬‭on‬‭the‬‭line.‬ ‭10.‬‭Parallel‬‭lines‬‭have‬‭the‬‭same‬‭slope.‬ ‭11.‬‭Perpendicular‬‭lines‬‭intersect‬‭at‬‭a‬‭right‬‭angle‬‭.‬ ‭12.‬‭Perpendicular‬‭lines‬‭have‬‭slopes‬‭that‬‭are‬‭negative‬‭reciprocals‬‭.‬

Use Quizgecko on...
Browser
Browser