AMA4101 Complex Numbers PDF

Summary

This document provides an introduction to complex numbers and their properties. It describes how to perform operations like addition, subtraction, multiplication, and division of complex numbers. It also covers the concept of modulus-argument form, along with examples and exercises related to solving complex number problems.

Full Transcript

SMA 305: COMPLEX ANALYSIS AMA4101: BackgroundCOMPLEX InformationNUMBERS AMA4101: COMPLEX NUMBERS Complex Numbers In the general quadratic equation ax 2 + bx + c = 0 -b ± b 2 - 4ac x= 2a When b - 4ac < 0 we cannot get the root of the negative numbers direc...

SMA 305: COMPLEX ANALYSIS AMA4101: BackgroundCOMPLEX InformationNUMBERS AMA4101: COMPLEX NUMBERS Complex Numbers In the general quadratic equation ax 2 + bx + c = 0 -b ± b 2 - 4ac x= 2a When b - 4ac < 0 we cannot get the root of the negative numbers directly. 2 We thus define i 2 = -1 Þ i = -1. This definition gives a set of new numbers called Complex numbers. A complex number can be defined as z = a + bi where a is the real part and b is the imaginary part. If z = a + bi , the conjugate of z is written as z = a - bi. z z = ( a - bi )( a - bi ) = a 2 - abi + abi - b 2i 2 = a2 + b2 Addition of Complex Numbers If z1 = a + bi and z2 = c + di , z1 + z2 = ( a + bi ) + ( c + di ) a + c + ( b + d ) i real part imaginary part Subtraction of Complex numbers z1 + z2 = ( a + bi ) - ( c + di ) = ( a + bi ) - c - di ) = ( a - c )+ ( b + d ) i real part imaginary part Multiplication of Complex numbers z1 ´ z2 = ( a + bi )( c + di ) = ac + adi + bci + bdi 2 But i 2 = -1 \ z1 ´ z 2 = ac + adi + bci - bd = ( ac - bd ) + ( ad + bc ) i Division of Complex numbers z1 a + bi = z2 c + di We can rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator. z (a + bi) ´ ( c - di ) i.e 1 = z2 (c + di ) ( c - di ) ac - adi + bci - bdi 2 = 2 c - cdi + dci - d 2i 2 ac - adi + bci + bd = c2 + d 2 1 (ac + bd ) + (bc - ad )i = c2 + d 2 ac + bd æ bc - ad ö = 2 +ç ÷i c + d 2 è c2 + d 2 ø Example 1: z1 If z1 = 3 + i, z2 = 5 - i find, (a) z1 + z2 (b) z1 - z2 (c) z1 z2 (d) z2 Solution: (a) z1 + z2 = ( 3 + i ) + ( 5 - i ) = ( 3 + 5 ) + ( i - i ) = 8 (b) z1 - z2 = ( 3 + i ) - ( 5 - i ) = 3 + i - 5 + i = -2 + 2i (c) z1 z2 = ( 3 + i )( 5 - i ) = ( 3 )( 5 ) + 3 ( -i ) + i ( 5 ) - i 2 = 15 - 3i + 5i + 1 = 16 + 2i z 3 + i ( 5 + i ) 15 + 3i + 5i + i 2 (d) 1 = ´ = z2 5 - i ( 5 + i ) 52 + 11 15 + 8i - 1 = 26 14 + 8i 7 + 4i = = 26 13 Argand diagram A complex number a + bi can be considered as an ordered pair of real numbers. We can represent such numbers by points in an x,y-plane called the complex plane or argand diagram. Example 2: Let z = 3 + 4i.Represent z in the complex plane. Solution: y 4 z=(3,4) Imaginary 3 axis 2 1 1 2 3 x Real axis 2 Modulus-argument form Let z = a + bi ,we can represent z in the following diagram. b z(a,b) q a x b b tan q = Þ q = tan -1 a a Now, z = a + bi Þ z = a 2 + b 2 z is called the modulus of the complex number and q is called the argument. If we let r = z = a 2 + b 2 , then r 2 = a 2 + b 2 - (1) But from the diagram above, b = a tan q Þ b 2 = a 2 tan 2 q. Substituting this in 1, we get r 2 = a 2 + a 2 tan 2 q ( = a 2 1 + tan 2 q ) r = a sec q 2 2 2 a2 r2 = cos 2 q Þ a 2 = r 2 cos2 q Þ a = r cos q Similarly, b = r sin q We can replace a and b in z = a + bi by a = r cos q , b = r sin q to get z = r cos q + ir sin q - = r ( cosq + i sin q ) -modulus-argument form But cosq + i sin q = eiq \ z = reiq If r = 1, z = eiq Example 3: Express the following complex numbers in polar form. 3 (a) z = -5 + 5i (b) z = - 6 - 2i Solution: (a) z = -5 + 5i; a = -5, b = 5 b 5 tan q = = = -1; tan -1 1 = 450 a -5 Tangent is negative and q is in 2nd quadrant \q = 1350 iy 5 1350 q x -5 ( -5 ) 2 z =r= + 52 = 50 = 5 2 \ z = r ( cosq + i sin q ) ( = 5 2 cos1350 + i sin1350 ) - 2 (b) z = -6 - 2i i q = tan -1 = 300 - 6 iy - 6 q x - 2 In the 3rd quadrant, q = (180 + 30 ) = 210 0 0 (- 6 ) + (- 2 ) 2 2 r= z = = 8=2 2 ( \ z = 2 2 cos 2100 + i sin 2100 ) 4 Exercise 1 z 1. Find 1 , where z1 = 2 + i and z2 = 3 - 2i. z2 De moivre’s theorem If z1 = a1 + ib1 = r1 ( cos q1 + i sin q1 ) and z2 = a2 + ib2 = r2 ( cos q 2 + i sin q 2 ) then z1 z2 = r1 ( cos q1 + i sin q1 ) r2 ( cos q 2 + i sin q 2 ) = r1r2 [ cos q1 cos q 2 + i sin q 2 cos q1 + i sin q1 cos q 2 - sin q1 sin q 2 ] = r1r2 [ cos q1 cos q 2 - sin q1 sin q 2 + i (sin q 2 cos q1 + sin q1 cos q 2 ] But cosq1 cos q 2 - sin q1 sin q 2 = cos (q1 + q 2 ) and sin q 2 cos q1 + sin q1 cos q 2 = sin (q1 + q 2 ) \ z1 z2 = r1r2 éë cos (q1 + q 2 ) + i sin (q1 + q 2 ) ùû …(1) A generalization of (1) leads to z1 z2 K zn = r1r2 K rn {cos (q1 + q 2 + Kq n ) + i sin (q1 + q 2 + Kq n )} …(2) If z1 = z 2 = K zn = z , equation (2) becomes zz K zn = rr K rn {cos (q + q + Kq n ) + i sin (q + q + Kq n )} i.e z n = r n {cos nq + i sin nq } …(3) When r = 1, z n = cos nq + i sin nq Equation (3) is called De-Moivre’s theorem. Example 4 If z = 1 + 3i , find z 5 Solution iy ( 3) 2 z = r = 12 + = 4=2 q 3 3 1 z q = tan -1 = 600 1 \ z = 2 ( cos 600 + i sin 600 ) ( ) ( z 5 = 25 éë cos 5 ´ 600 + i sin 5 ´ 600 ùû ) = 3 2 ( cos300 0 + i sin 3000 ) Example 5 Prove the identities , cos 5q = 16cos5 q - 20cos3 q + 5cos q Solution z n = ( cos q + i sin q ) = cos nq + i sin nq n When r=1 When n=5 z 5 = cos 5q + i sin 5q Þ ( cos q + i sin q ) = cos 5q + i sin 5q 5 5 Expanding the L.H.S ,we get ( cos q + i sin q ) = cos 5 q + 5(i sin q ) cos 4 q + 10 ( i sin q ) cos3 q + 10 ( i sin q ) cos 2 q + 5 ( i sin q ) cos q + ( i sin q ) 5 2 3 4 5 (Using Binomial expansion/ Pascal’s triangle) = cos5 q + 5i sin q cos4 q - 10sin 2 q cos3 q - 10i sin 3 q cos 2 q + 5sin 4 q cos q + i sin 5 q Separating the real and imaginary parts, we get ( cos q + i sin q ) 5 { = cos5 q - 10sin 2 cos3 q + 5sin 4 q cos q + i 5sin q cos 4 q - 10sin 3 q cos2 q + sin 5 q } { \ cos 5q + i sin 5q = cos5 q - 10sin 2 q cos3 q + 5sin 4 q cos q + i 5sin q cos4 q - 10sin 3 q cos 2 q + sin 5 q } Equating the real and imaginary parts, we get cos 5q = cos5 q - 10sin 2 q cos3 q + 5sin 4 q cos q ( ) ( ) 2 = cos5 q - 10 1 - cos 2 q cos 3 q + 5 cos q 1 - cos 2 q = cos5 q - 10 cos 3 q + 10 cos 5 q + 5 cos q [1 - 2 cos 2 q + cos 4 q ) = cos5 - 10 cos3 q + 10cos5 q + 5cosq - 10cos3 q + 5cos5 q = 16 cos5 q - 20cos3 q + cos q Exercise 2 1. Prove the identities (a) sin 3q = 3sin q - 4sin 3 q (b) cos 4q = 8sin 4 q - 8sin 2 q + 1 (c) cos 3q = 4cos3 q - 3cos q (d) sin 5q = 16 cos4 q - 12cos 2 q + 1 Example 6 Solution (question (b) in exercise 2) (b) cos 4q = 8sin 4 q - 8sin 2 q + 1 Using Demoivre’s theorem when n=4, ( cos q + i sin q ) = cos 4q + i sin 4q 4 6 Expanding the L.H.S, we get ( cos q + i sin q ) = cos 4 q + 4i cos 3 q sin q + 6 cos 2 q ( i sin q ) + 4 cos q ( i sin q ) + ( i sin q ) 4 2 3 4 = cos4 q + 4i cos3 sin q - 6cos2 q sin 2 q - 4i cos q sin 3 q + sin 4 q = cos 4 q - 6 cos 2 q sin 2 q + sin 4 q + i ( 4 cos3 q sin q - 4 cos q sin 3 q ) Equating the real parts, we get cos 4q = cos 4 q - 6 cos2 q sin 2 q + sin 4 q ( ) - 6 cos q sin q + sin q 2 = cos 2 q 2 2 4 = (1 - sin q ) - 6 (1 - sin q ) sin q + sin 2 2 2 2 4 q = 1 - 2sin 2 q + sin 4 q - 6sin 2 q + 6sin 4 q + sin 4 q cos 4q = 8sin 4 q - 8sin 2 q + 1 Roots of Complex numbers 1 A number w is called an n root of a complex number z if w = z and we write w = z. From De th n n Moivre’s theorem, we can show that if n is a positive integer, 1 1 z n = {r ( cos q + i sin q )} n 1 ì æ q + 2p k ö æ q + 2p k ö ü = r n ícos ç ÷ + i sin ç ý î è n ø è n ÷ø þ k = 0, +1, ±2L 1 It follows that there are n different values of z n , i.e n different nth roots of z ,provided z ¹ 0. Example 7 Find all the values of z for which z 5 = -32 and locate these values in the complex plane. Solution: z 5 = -32 = -32 + 0i iy æ 0 ö 0 = tan -1 ç ÷=0 q x è -32 ø Acute angle is 0 (-32,0) q is in 2nd quadrant, thus q = 1800 ( -32 ) 2 r= + 02 = 32 z 5 = 32 éë cos (180 + 2p k ) + i sin (180 + 2p k ) ùû Taking the 5th root of both sides, we have 1 { z = 32 éë cos (180 + 2p k ) + i sin (180 + 2p k ) ùû } 5 7 1 ì æ 180 + 2p k ö æ 180 + 2p k ö ü = 32 ícos ç 5 ÷ + i sin ç ÷ý î è 5 ø è 5 øþ = 2k = 0,1, 2, 3, 4 When k=0, z1 = 2 ( cos 360 + i sin 360 ) æ 3p 3p ö When k=1, z2 = 2 ç cos + i sin ÷ è 5 5 ø When k=2, z3 = 2 ( cos 5p + i sin 5p ) æ 7p 7p ö When k=3, z4 = 2 ç cos + i sin ÷ è 5 5 ø æ 9p 9p ö When k=4, z5 = 2 ç cos + i sin ÷ è 5 5 ø Note: For k=5,6,…as well as -1,-2,… repetitions of the above values are obtained. Hence these are the only roots/ solutions of the given equation. x The five roots are called the fifth roots of -32. Example 8 Find the third roots of -1+i Solution Let z=-1+i iy ( -1) + (1) 2 2 z =r= = 2 From the diagram, q in the 2nd quadrant. 1 q 1350 x 1 -1 tan -1 q = = -1 -1 acute angle is 450 \q = 1800 - 450 = 1350 8 ( \ z = 2 éë cos 1350 + 2p k + i sin 1350 + 2p k ùû) ( ) { )} 1 1 z = 3 ( 0 ) 2 éë cos 135 + 2p k + i sin 135 + 2p k ùû ( 0 3 é 1 = ( 2 ) ê cos 6 (135 0 + 2p k ) + i sin (135 0 + 2p k ) ù ú êë 3 3 úû K=0,1,2 1 When k=0, z1 = 2 6 ( cos 450 + i sin 450 ) æ 11 ö 1 11 When k=1, z2 = 2 6 ç cos p + i sin p ÷ è 12 12 ø æ 19 ö 1 19 When k=2, z3 = 2 6 ç cos p + i sin p ÷ è 12 12 ø Example 9 Find the fourth root of z = -2 3 - 2i Solution: ( -2 ) ( ) 2 z =r= + -2 3 = 4 + 12 = 16 = 4 2 -2 q = tan -1 -2 3 From the diagram, q is in the 3rd quadrant iy -2 1 tan q = = 2100 -2 3 3 p Acute angle is 300 = -2 3 -2 q x 6 q = 300 + 1800 = 2100 = ( \ z = 4 cos 210 0 + i sin 210 0 ) 1 1 é ì ï z = ê 4 ícos ( 2100 + 2p k ) 2100 + 2p k ( ) üïù 4 4 + i sin ýú ê ï 4 4 ïþúû ë î =for k=0,1,2,3 æ 7p 7p ö When k=2, z1 = 2 ç cos + i sin ÷ è 24 24 ø æ 19p 19p ö When k=1, z2 = 2 ç cos + i sin ÷ è 24 24 ø 9 æ 31p 31p ö When k=2, z3 = 2 ç cos + i sin ÷ è 24 24 ø æ 43p 43p ö When k=3, z4 = 2 ç cos + i sin ÷ è 24 24 ø Example 10 Find the square roots of -15 - 8i Solution Let z = -15 - 8i ( -8 ) + ( -15) 2 2 z =r= = 64 + 225 = 17 -8 q = tan -1 ; From the diagram below, q is in the 3rd quadrant -15 Acute angle is 280 \q = 1800 + 280 = 2080 2080 -8 x q -15 \q = 17 {cos (108 + 2p k ) + i sin ( 208 + 2p k )} 1 1 z = {17{cos ( 208 + 2p k ) + i sin ( 208 + 2p k )} 2 2 æ æ 208 + 2p k ö ( 208 + 2k ) ö = 17 ç cos ç ÷ + i sin ÷ è è 2 ø 2 ø For k=0,1 When k=0, z1 = 17 ( cos104 0 + i sin104 0 ) When k=1, z2 = 17 ( cos(104 + p ) + i sin(104 + p ) Exercise 3 1.Express in polar form (a) 2 - 2i (b) -1 + 3i (c) -i 3 3 (d) - i 2 2 10 2. Solve the equation 24 + 8i = 0 3. Solve the equation 26 + 1 = 3i 4. Find the square roots of (a) 5 - 12i (b) 8 + 4 5i 5. Find the cube roots of -11 - 2i Expansion of cos n q ,sin n q , cos nq and sin nq Let z = cos q + i sin q z - m = ( cos q + i sin q ) -m 1 = ( cos q + i sin q ) m 1 = (De Moivre’s) cos mq + i sin mq = ( cos mq + i sin mq ) -1 = cos ( -mq ) + i sin ( -mq ) = cos mq - i sin mq When n=1, z = cos q + i sin q 1 z -1 = = cos q - i sin q z 1 z + = cos q + i sin q + cos q - i sin q z 1 z + = 2cos q z 1 Similarly, z - = cos q + i sin q - cos q + i sin q z 1 z - = 2i sin q z In the same way, z n = ( cos q + i sin q ) = cos nq + i sin nq and n 1 = ( cos q + i sin q ) = cos nq - i sin q -n n z Thus z n = ( cos q + i sin q ) = cos nq + i sin nq n 1 zn + = 2cos nq zn 1 zn - = cos nq + i sin nq - cos nq + i sin nq zn = 2i sin nq Example 11 Express cos6 q in multiple angles. Solution: 11 1 2cos q = z + z 6 2 3 4 5 6 æ 1ö æ1ö æ1ö æ1ö æ1ö æ1ö æ1ö \ ( 2 cos q ) = ç z + ÷ = z 6 + 6 z 5 ç ÷ + 15 z 4 ç ÷ + 20 z 3 ç ÷ + 15 z 2 ç ÷ + 6 z ç ÷ + ç ÷ 6 è zø èzø èzø èzø èzø èzø èzø æ 1ö æ 1 ö æ 1 ö = ç z 6 + 6 ÷ + 6 ç z 4 + 4 ÷ + 15 ç z 2 + 2 ÷ + 20 z è z ø è z ø è z ø 1 But z 6 + 6 = 2cos 6q z 1 z 4 + 4 = 2cos 4q z 1 z 2 + 2 = 2cos 2q z 6 æ 1ö \ ( 2 cos q ) = ç z + ÷ = 2 cos 6q + 12 cos 4q + 30 cos 2q + 20 6 è zø 1 cos6 q = {2cos 6q + 12cos 4q + 30cos 2q + 20} 32 Example 12 Express sin 5 q in multiple angles Solution 5 æ 1ö ( 2i sin q ) 5 =çz- ÷ è zø æ -1 ö æ -1 ö æ -1 ö æ -1 ö æ -1 ö æ -1 ö 0 2 3 4 5 = z ç ÷ + 5 z 4 ç ÷ + 10 z 3 ç ÷ + 10 z 2 ç ÷ + 5 z ç ÷ + ç ÷ 5 è z ø è z ø è z ø è 2 ø è z ø è z ø æ1ö æ 1 ö 1 5 = z 5 - 5 z 3 + 10 z - 10 ç ÷ + 5 ç 3 ÷ - èzø èz ø z 1 æ 1ö æ 1ö = z5 - - 5 ç z 3 - 3 ÷ + 10 ç z - ÷ z 5 è z ø è zø = 2i sin 5q - 5 ( 2i sin 3q ) + 10 ( 2i sin q ) 32i sin 5 q = 2i sin 5q - 10i sin 3q + 20i sin q 1 sin 5 q = {sin 5q - 5sin 3q + 10sin q } 16 12 Exercise 4 Express the following in multiple angles. 1. cos 4 q 2. sin 3 q 3. sin 5 q Absolute Value The absolute value or modulus of a complex number a + bi is defined as z = x + iy = x 2 + y 2 e.g z = -4 + 2i ( -4 ) 2 z = + 22 = 20 = 2 5 If z1 , z 2 , z3 ,K , zm are complex numbers, the following properties hold (1) z1 z2 = z1 z2 or z1 z2 K zm = z1 z2 K zm z1 z (2) = 1 ,if z2 ¹ 0 z2 z2 (3) z1 + z2 £ z1 + z2 (4) z1 + z2 ³ z1 - z2 Proof (1) z1 z2 = z1 z2 Let z1 = x1 + iy1 , z2 = x2 + iy2 z1 z 2 = ( x1 + iy1 )( x2 + iy2 ) = x1 x2 + ix1 y2 + iy1 x2 - y1 y2 = ( x1 x2 - y1 y2 ) + i ( x1 y2 + y1 x2 ) ( x1 x2 - y1 y2 ) + ( x1 y2 + y1 x2 ) 2 2 = ( x1 x2 ) - 2 x1 x2 y1 y2 + ( y1 y2 ) + ( x1 y2 ) + 2 x1 x2 y1 y2 + ( y1 x2 ) 2 2 2 2 = = x12 x2 2 - 2 x1 x2 y1 y2 + y12 y2 2 + x12 y2 2 + 2 x1 y2 y1 x2 + y12 x2 2 13 = x12 x22 + x12 y22 + y12 y2 2 + x22 y12 ( ) = x12 x2 2 + y2 2 + y12 y2 2 + x22 ( ) = (x1 2 + y12 )( x 2 2 + y2 2 ) = x12 + y12 x22 + y2 2 = z1 z2 3. z1 + z2 £ z1 + z2 14

Use Quizgecko on...
Browser
Browser