AI Quiz AI quiz split_33-38.pdf PDF

Summary

This document discusses the evolutionary psychology of social exchange, focusing on cheater detection and the role of social context in human reasoning. It examines how humans reason differently in abstract versus social-contract problems. The article also touches on how brain damage can affect social reasoning capabilities.

Full Transcript

9 COOPERATIVE ALLIANCES all cards with an even number on one side must have a vowel on the other, it doesn’t matter whether a vowel or a consonant is on the back of the “2.” In contrast, turning over the “3” card would yield a powerful test of the rule. If the back side of the “3” is a vowel, then...

9 COOPERATIVE ALLIANCES all cards with an even number on one side must have a vowel on the other, it doesn’t matter whether a vowel or a consonant is on the back of the “2.” In contrast, turning over the “3” card would yield a powerful test of the rule. If the back side of the “3” is a vowel, then the rule is defnitively falsifed. So the logically correct answer is to turn over cards “a” and “3” (the “b” card also provides no information relevant to the hypothesis, since the rule does not make any statements about what the back side of a consonant card must contain). Why are people so bad at solving problems of this sort? According to Cosmides and Tooby (1992, 2005), the answer is that humans have not evolved to respond to abstract logical problems; they have evolved, however, to respond to problems structured as social exchanges when they are presented in terms of costs and benefts. Consider this problem: You are a bouncer at a local bar, and your job is to make sure that no one who is underage drinks alcohol. You have to test this rule: “If a person is drinking alcohol, then he or she must be 21 years old or older.” Which of the following four people do you have to check out to do your job: someone drinking beer, someone drinking soda, a 25-year-old, or a 16-yearold? In contrast to the abstract logic problem above, the vast majority of people correctly select the beer drinker and the 16-year-old. The logic of the problem is identical to the above abstract problem involving vowels and even numbers. So why are people good at solving this problem but not the abstract problem? People reason correctly when the problem is structured as a social contract. If you drink beer but are not over 21 years old, then you have taken a beneft without meeting the requirement (cost) of being of legal drinking age. People do well when they are “looking for cheaters,” those who have taken a beneft without paying the cost. For people to succeed at this task, it need only be structured such that they will construe the problem in terms of taking benefts and paying costs. Cosmides and Tooby were able to rule out a number of alternative hypotheses. The efect does not depend on being familiar with the content of the problem, for example. When strange and unfamiliar rules were used, such as “if you get married, you must have a tattoo on your forehead” or “if you eat mongongo nuts, you must be over six feet tall,” roughly 75 percent of the subjects still answered correctly (in contrast to the fewer than 10 percent who got it right in the abstract version). According to these studies, the human mind has an evolved psychological mechanism specifcally designed to detect cheaters. These fndings have been replicated in other cultures, such as the Shiwiar, a foraging tribe in Ecuador (Sugiyama, Tooby, & Cosmides, 2002). Indeed, the percentage of correct answers by the Shiwiar in one condition was 86 percent, which is nearly identical to the performance of Harvard undergraduates, who typically get 75 to 92 percent correct. This cross-cultural evidence points to the possible universality of a cheater-detection adaptation in social exchange. Additional evidence for a specifc cheater-detection adaptation comes from work conducted with brain-damaged patients by evolutionary psychologist Valerie Stone and her colleagues (Stone, Cosmides, Tooby, Kroll, & Knight, 2002). One patient, R. M., had sustained damage to his orbitofrontal cortex and amygdala, two regions of the brain. R. M. was able to reason correctly on some problems. For example, on problems that were structured as “precaution rules,” of the form “If you engage in a hazardous activity such as X, you must take proper precautions such as Y,” R. M. performed just as well as people with no brain damage. In contrast, he performed extremely poorly on social contract problems of the sort “If you take a beneft X, you must pay the cost Y.” This dissociation between R. M.’s performance on the two types of reasoning tasks suggests that social-exchange reasoning might be a separate and specialized component of the human cognitive machinery. Interestingly, people with R. M.’s pattern of brain damage are susceptible to scams, exploitative relationships, and unfavorable business deals (Stone et al., 2002). 255 PROBLEMS OF GROUP LIVING 256 Cheater-detection appears to be highly sensitive to the perspective one adopts (Gigerenzer & Hug, 1992). Consider the following rule: “If an employee gets a pension, he has worked for 10 years.” What would constitute a violation of the social contract? It depends on whom you ask. When participants are instructed to take the employee’s point of view, they seek out workers who have put in more than 10 years but have not received a If your job were to ID people to test the rule “If a person is drinking alcohol, pension. This would constitute then he or she must be at least 21 years old,” which people would you ask for a violation of the social contract proof of age? by the employer, who failed to grant the pension when it was deserved. On the other hand, when participants are instructed to take the perspective of the employer, they seek out workers who have worked for fewer than 10 years but who nonetheless have taken a pension. This would constitute a violation of the social contract by the employee, who would be taking a pension without having put in the full 10 years of service. Perspective, in short, appears to govern cheater detection. Do People Remember Cheaters? Memory may play a special role in cheater detection. One study found that people remember the faces of known cheaters, especially low-status cheaters, better than they remember the faces of known co-operators (Mealey, Daood, & Krage, 1996). This original fnding, however, has not always been replicated (Mehl & Buchner, 2008). Memory for cheaters may partly depend on their rarity in the population. One study found that cheaters were remembered best when they were rare but worse when they were quite common (Barclay, 2008). Other studies show that people have better “source memory” for the faces of cheaters—that is, good memory for the specifc cheating context in which the face was encountered (Bell & Buchner, 2009; Buchner, Bell, Mehl, & Musch, 2009). Another study found that people remember the faces of real cheaters better than those of real co-operators, even when they have no knowledge that these individuals have actually cheated or cooperated (Yamagishi, Tanida, Mashima, Shimona, & Kanazawa, 2003). Oda and Nakajima (2010) discovered that people show excellent face recognition for non-altruists in one experimental game and behaviorally avoid interacting with them in subsequent experimental games. People show an automatic attentional bias toward the faces of people who had previously failed to cooperate during a prisoner’s dilemma game (Vanneste, Verplaetse, Van Hiel, & Braeckman, 2007). Perhaps those who pursue a cheating strategy might give of subtle visual cues or somehow look diferent from those who tend to pursue a cooperative strategy. Facial expressions of enjoyment such as smiling predict subsequent cooperation in a prisoner’s dilemma game; facial expressions of contempt predict non-cooperation (Reed, Zeglen, & Schmidt, 2012). Even after a brief interaction, people are reasonably accurate at predicting who will cooperate and who will not. Priming people by asking them to remember an event in their lives in which they had been cheated causes markedly better performance on the cheater-detection problem (Chang & Wilson, 2004). All these results support hypothesized cognitive capacities for cheater detection both in attention and in memory. Nonetheless, there is also evidence that people are especially good at remembering threatening stimuli such as angry faces, so some theorists propose a more general memory adaptation for threatening or cost-inficting events, of which being cheated is merely one (Bell & Buchner, 2012). 9 COOPERATIVE ALLIANCES Further research is clearly needed to explore social contract theory generally and the cheater-detection mechanism in particular. Recall the basic defnition of psychological mechanisms as involving “input, decision rules, and output.” We know little about whether people are sensitive to certain items of input: Do men and women have special sensitivities to certain types of cheating, such as to sexual infdelity in the context of a marriage social contract or to provide physical protection in the case of friendship (Shackelford & Buss, 1996)? It seems intuitively obvious that people get mad, tell others the person has cheated, and avoid contact in the future, but we formally know little about the “output” side: What specifc actions do people take when they detect a cheater, and how do those actions difer depending on contexts such as status discrepancies and genetic relatedness? Some ground has been broken on the output side by the proposal that a simple “walk away” rule can evolve, whereby people leave in response to groups or individuals providing low cooperative returns (Aktipis, 2004, 2011). Simply allowing people the option to leave or move away tends to increase cooperation and also allows co-operators to associate with each other more easily (Aktipis, 2004; Eferson, Roca, Vogt, & Helbing, 2016). The Detection of Prospective Altruists Once a cheater-detection adaptation has evolved in humans, selection will favor coevolved adaptations to avoid being detected as cheaters. Cheater-detection adaptations, in turn, lead to increasingly subtle forms of cheating. These forms of cheating pose serious problems for people who seek to enter cooperative alliances. According to evolutionary psychologist William Michael Brown, humans have evolved another adaptation to solve this problem: the ability to detect the genuineness of altruistic acts (Brown & Moore, 2000). Consider two men giving a dollar to a homeless person. In one case, you detect that the man has genuine sympathy for the plight of the homeless person and that this sympathy motivates his desire to help. In the other case, you fnd out that the man doesn’t care at all about the homeless person but is merely giving the person a dollar to impress his date. Which of these two men would you be more likely to seek for a cooperative venture? Brown and Moore (2000) created a version of the Wason selection task to test whether people look for the existence of genuine emotions that might lie behind an act of altruism. The altruistdetection task had the following rule: “If X helps, then X seeks credit.” Participants in the study then indicated which cards they would turn over: The logic behind this task is that people who help others only to receive external credit are not good candidates for helping in the future and so make poor cooperative allies. Those who help others without seeking credit, on the other hand, display genuine altruistic tendencies and so would make excellent allies. The correct answer, from the perspective of altruist detection, would be to select the cards “X helps” and “X does not seek credit.” Brown and Moore (2000) found through two diferent experiments that most people choose cards that allowed them to detect altruists. Indeed, performance on the altruist-detection tasks was nearly as good as performance on the cheater-detection tasks, and both were far better than performance on the abstract problems. Clearly, the ability to detect genuine altruists would greatly favor the evolution of cooperation, on the assumption that the genuineness of an altruistic act is a good predictor of future acts of altruism. Importantly, success of performance on the altruist-detection task is not linked with success of performance on the cheaterdetection task, indicating that the two abilities are distinct (Oda, Hiraishi, & Matsumoto-Oda, 2006). Altruistic dispositions can be detected even from witnessing very brief video clips. 257 PROBLEMS OF GROUP LIVING 258 In one study, judges watched 20-second silent video clips of strangers and then were asked to estimate the person’s generosity on a money-sharing task (Fetchenhauer, Groothuis, & Pradel, 2010). People’s estimates were signifcantly more accurate than chance, even though the video clips were taken in a setting entirely unrelated to altruistic behavior. Another study had people complete a self-report questionnaire of their performance of altruistic acts, such as “I have donated goods or clothes to charity” and “I have ‘picked up the slack’ for another worker when he or she couldn’t keep up the pace” (Oda, Yamagata, Yabiku, & MatsumotoOda, 2009). Those who scored either very high or very low on altruism were then videotaped while being asked to describe their likes and dislikes. The tapes, with sound removed, were then shown to other people who did not know them. Viewers of the videotapes were able to correctly estimate the target’s level of altruism. Coding of the nonverbal behavior reveals that altruists tended to display more “genuine smiles” than non-altruists. The facial cue of genuine (spontaneous) smiles is a valid cue to altruistic and cooperative dispositions (Mehu, Grammer, & Dunbar, 2007). Moreover, people are especially cooperative with healthylooking individuals and likely choose them for reciprocity partners, in part because they are likely to live longer and possess higher-quality resources (Krupp, DeBruine, & Jones, 2011). In short, current evidence points to two distinct adaptations that facilitate the evolution of cooperation: (1) the detection of cheaters (those who take benefts without paying costs) and (2) the detection of altruists (those whose motivation is genuine) and those likely to be good reciprocity partners, as indicated by their apparent good health. Indirect Reciprocity Theory Another path through which altruism can evolve is called indirect reciprocity (Alexander, 1987; Nowak, 2006; Nowak & Sigmund, 2005; Roberts, 2008). People who perform altruistic acts advertise a propensity for generosity and cooperation. Others may glean this information either through direct observation of altruistic acts or through word of mouth (gossip, reputation). Consequently, they become attractive as excellent cooperation partners. So the beneft to the altruist does not come directly from the person who receives the initial altruistic act, as occurs with reciprocal altruism, but rather from other people who either witnessed or heard about the person behaving generously. Indirect reciprocity may help to explain why we help strangers who are in need without expecting anything in return and why we are especially generous when others are watching. It can also explain why people who are themselves helpful are most likely to receive help from others in the group when they are in need (Nowak, 2006). Risk Pooling, Social Insurance, and Need-Based Transfers Another evolutionary path to beneft delivery falls under the label of need-based transfer systems (Aktipis et al., 2016). In risky or volatile environments, forming special types of friendships can be a form of social insurance against catastrophe. An example will illustrate this idea. The Massai of East Africa have a system called osotua. Individual Massai develop osotua friends. When someone is in dire need, they can call upon their osotua friend for help, and if the friend can help, he or she is obligated to do so. The helper does not necessarily expect to get repaid, so this is not the same as reciprocal altruism. Instead, participating in the osotua system helps to manage risk. By pooling risk, these individuals have a form of social insurance in the event they fnd themselves in need. These need-based transfer systems work best in environments that are extremely volatile, such as when one risks losing one’s entire herd of cattle to theft or disease. This form of risk pooling or social insurance is less needed in environments that are more predictable and stable. The scientifc study of need-based transfer systems has just begun, but it shows promise for being another process by which individuals have evolved to deliver benefts to other individuals. 9 COOPERATIVE ALLIANCES Costly Signaling Theory Another path through which altruism can evolve involves costly signaling (Gintis, Smith, & Bowles, 2001; Grafen, 1990; McAndrew, 2002; Miller, 2007; Zahavi, 1977). The logic behind costly signaling is that individuals display acts of altruism—giving substantial gifs, donating to charity, throwing lavish dinners—to signal that they are excellent potential allies. Only those in excellent condition can aford to display costly acts of altruism; those in poor condition or those who lack an abundance of resources cannot aford to display costly signals. The lavish feasts and parties thrown by some individuals, with an abundance of good food and drink, might be manifestations of costly signaling. They yield honest signals about one’s quality as a coalitional ally. The key to costly signaling is that its cost ensures that it is an honest signal. Only those in excellent condition or with ample resources can aford to display the costly signal of altruistic action. Costly altruism becomes an honest cue that others then use to gauge a person’s resource-holding potential, wealth, intelligence, or ftness (Miller, 2000; Millet & Dewitte, 2007). Several studies show that group members who endure pain for the beneft of the group success are awarded more benefts and held in higher esteem, supporting a costly signaling hypothesis for altruistic acts (McAndrew & Perilloux, 2012a, 2012b). The ftness benefts from costly signaling could come in several forms: (1) being preferentially chosen by others for cooperative relationships, (2) increased levels of cooperation within those relationships, and (3) higher status and reputation within the group, which could lead to a host of benefts, including higher-quality mating opportunities (Barclay & Willer, 2007; Miller, 2000; van Vugt & Hardy, 2009; Zahavi, 1995). One empirical test of costly signaling theory requested participants to volunteer to give assistance to one of seven diferent charities (Bereczkei, Birkas, & Kerekes, 2010). In one condition, participants indicated their willingness anonymously. In the other, they declared their willingness in front of a group of others. Although the volunteer time for the charities was identical (roughly 4 hours), the nature of the work varied in perceived costliness—from taking blood pressure (least costly) to providing assistance to mentally handicapped children (most costly). When volunteering anonymously, most chose the least taxing charity work; when volunteering publicly, many more chose the costly charity work (see Figure 9.2). Those who chose the most costly altruistic investment in the public condition experienced a boost in their social reputation and popularity. Another study examined one form of costly signaling, “prosocial signaling,” as indicated by the percentage of meat from that a hunter typically shared with others, among Martu hunters, an aboriginal group residing in Australia (Bird & Power, 2015). The prosocial signalers were most often sought after as cooperative hunting partners, suggesting that this form of generosity signaling provides one route to the evolution of altruism. In short, altruism through costly signaling appears to enhance a person’s status and reputation and increases the odds of being chosen as a cooperation partner, providing a plausible means by which altruism can evolve (Sylwester & Roberts, 2013). Furthermore, altruists seem to be good at spotting each other and preferentially hanging out with each other (Fletcher & Doebeli, 2009; Pradel, Euler, & Fetchenhauer, 2009). So not only do altruists beneft by being sought after by others in general as social partners, they also beneft even more by attracting others with a high disposition toward altruism. Just as people similar in mate value tend to pair up (assort with each other), those who are similar in “altruist value” tend to pair up, assorting with each other. In sum, several powerful theories have been developed to explain the evolutionary puzzle of altruism or adaptations to deliver benefts to other people: (1) inclusive ftness (discussed in Chapter 8), (2) reciprocal altruism, (3) indirect reciprocity, (4) need-based transfer systems, and 259 PROBLEMS OF GROUP LIVING 260 (5) costly signaling (Johnson, Price, & Takezawa, 2008). One possible overarching principle that might tie these diferent evolutionary theories together is positive assortment—people preferentially associate with and form relationships with a subset of other individuals. In the case of inclusive ftness, people assort based on genetic relatedness. In reciprocal altruism, people assort based on who returns benefts to those who have benefted them in the past. In indirect reciprocity, people associate with groups of people who have reputations as good co-operators. In need-based transfer systems, people form special friendships based on ability and willingness to help in times of need in volatile environments. In costly signaling, people associate with those who have demonstrated beneft-bestowing capacities through showing costly honest signals of resource-holding potential. The fip side is avoiding assorting with people who infict costs, such as non-reciprocators, free-riders, or those who disrupt the coordination of the group (e.g., Robertson, Delton, Klein, Cosmides, & Tooby, 2014). In short, positive assortment—associating with some people and not others—may provide a unifying principle underlying diferent forms of beneft delivery (see Fletcher & Doebeli, 2009; special thanks to Athena Aktipis, personal communication, 2018, for this key idea, especially as it applies to humans). In all these forms of cooperation, individuals ally their ftness interests with other individuals—they become ftness interdependent (Aktipis et al., 2018). Emotions Involved in Cooperation Although some of this discussion of altruism, cooperation, and helping may seem cold and calculating, there is good evidence that emotions play a large role. One paramount emotion is gratitude. People are especially likely to feel strong gratitude toward friends who help them out, even more than to genetic relatives who help them out (Rotkirch, Lyons, David-Barrett, & Jokela, 2014). Moreover, people are bothered when someone they’ve helped out fails to express the emotion of gratitude. People also experience gratitude when they are helped by a stranger, and the expression of gratitude predicts higher levels of cooperation in future interactions (Smith, Pedersen, Forster, McCullough, & Lieberman, 2017). Evolutionary psychologist Gary Brase explored a wider array of emotions involved in reciprocity and violations of reciprocity (Brase, 2017). Like others, he found that people experience gratitude toward those who help them and also anger toward those who could help them but fail to do so. People experience the emotion of guilt when they fail to help others. These emotions presumably function to motivate others to cooperate (gratitude to those who have helped), to punish those who do not cooperate (anger leading to aggression toward those who have not helped), and even to motivate oneself to deliver benefts to others (guilt leading to future proclivity to cooperate). The Psychology of Friendship Do these four routes to cooperation exhaust the theoretical possibilities? Tooby and Cosmides (1996) suggest another potential avenue for the evolution of cooperation and altruism in the context of friendship. They ask us to consider human intuitions— many people become angry when they hear the evolutionary explanation that their friendships are based solely on explicit reciprocity. People report feeling pleasure when they help others in need without insisting on or expecting any future reward. In fact, when a person insists on immediately repaying us for a favor we have performed, we interpret this as a sign of a lack of friendship (Shackelford & Buss, 1996). We want to help out our friends just because they are our friends and not because we will reap some later reward. Furthermore, in a marriage, which can be considered another type of cooperative relationship, an immediate reciprocal exchange orientation is typically linked with marital dissatisfaction and the expectation that the marriage might dissolve (Hatfeld & Rapson, 1993; Shackelford & Buss, 1996). Are people deceiving themselves? Do we really want reciprocal rewards but fool ourselves into believing that we help our friends out of the goodness of our hearts? Tooby and Cosmides (1996) argue that we should attend to people’s intuitions, for they provide a cue that friendships might not be based solely on reciprocal exchange.

Use Quizgecko on...
Browser
Browser