Elasticity in Rubber Balls - 2015 PDF
Document Details
Uploaded by EnergyEfficientSelkie3678
Tags
Summary
This document explains elasticity using examples, diagrams, and equations for different materials and provides discussion points for concepts covered in the text.
Full Transcript
المرونة EXAMPLE: Stretch squeeze Release Release االجسام المرنة :هى االجسام التى اذا اثرت عليها بقوة وتغير طولة او حجمة او شكلة فعند زوال هذه القوة يعود الجسم الى وضعة...
المرونة EXAMPLE: Stretch squeeze Release Release االجسام المرنة :هى االجسام التى اذا اثرت عليها بقوة وتغير طولة او حجمة او شكلة فعند زوال هذه القوة يعود الجسم الى وضعة االصلى. االجسام غير المرنة :هى االجسام التى اذا اثرت عليها بقوة وتغير طولة او حجمة او شكلة فعند زوال هذه القوة ال يعود الجسم الى وضعة االصلى. 2 The elastic limit The elastic limit of a solid is the point beyond which a deformed object cannot return to its 3 original shape. Stress vs. Strain Curve 4 منحنى االجهاد -االنفعال نقطة حد المرونه يطلق على العالقة االنكسار الخطية بين االستطالة ووزن الثقل أقصى إجهاد ممكن أن اسم قانون هوك يطبق على المادة قبل F=k x أن تفقد مرونتها. ثابت القوه يتناسب مقدار مقدار التشوه خطيا ً مع االستطاله القوة المشوهة (قانون هوك) F L المرونة :هى النسبة بين االجهاد على االنفعال االجهاد :القوة المؤثرة على وحدة المساحات االنفعال :استجابة الجسم النسبية لإلجهاد المؤثر (مقياس لدرجة تغير الشكل) عند تطبيق إجهاد محدد ،يتناسب االجهاد مع اإلنفعال ,و ثابت التناسب يعتمد على طبيعة المادة و التشوه الحادث . و يعطى بالعالقةElastic modulus :و يسمى بمعامل المرونة للمادة stress S Elastic modulus strain 6 كلما كان معامل المرونة كبير كلما كانت المادة صعبة التشوه. أنواع معامالت المرونة (باعتبار نوع التشوه): (1معامل يونج :Young’ s modulus يقيس مقاومة الجسم الصلب للتغير في طوله. )2معامل القص :Shear modulus يقيس مقاومة انزالق أسطح الجسم بالنسبة لبعضها. )3معامل المرونة الحجمي :bulk modulus يقيس مقاومة المادة للتغير في حجمها. معامل ينج YOUNG’S MODULUS * قضيب طوله األصلي Liو مساحة مقطعه ،Aمثبت في أحد طرفيه. * أثرت قوة Fعمودية على مساحة مقطع القضيب من الطرف اآلخر،فزاد طوله بمقدار ΔLليصبح طوله .Lf مالحظات: تقاوم القوة الداخلية حدوث التمدد. تتوازن القوة الداخلية مع القوة الخارجية لتحدث الزيادة في الطول بمقدار .ΔL يقال في هذه الحالة أن القضيب قد أُجهد. F tensile stress Y A tensile strain L Li Units are N / m2 8 استنتاجات عامة -1إذا طبقت قوة خارجية ثابتة على القضيب فإن التغير في الطول يتناسب مع الطول األصلي. -2تتناسب القوة الالزمة إلحداث االنفعال مع مساحة مقطع القضيب. Shear Modulus معامل المرونة القصى جسم تؤثر عليه قوة Fماسة ألحد أسطحه بينما السطح المقابل ثابت بفعل قوة ما كقوة االحتكاك .Fs مالحظات: x تقاوم القوة الداخلية حدوث االنزالق. ∆ تتوازن القوة الداخلية مع القوة الخارجية و يحدث التغير. A h F shear stress S A shear strain x h 10 Bulk Modulus معامل المرونة الحجمى جسم تؤثر عليه قوة عمودية Fعلى جميع أسطحه. يواجه الجسم ضغط منتظم على الجسم فيحدث له تشوه في حجمه. F B volume stress A P volume strain V V Vi Vi 11 MODULI VALUES نالحظ من الجدول: 12 -1كل من المواد الصلبة والسائلة لها معامالت مرونة. -2المواد السائلة ال يوجد لها معامل يونج وال معامل المرونة القصي ألنه ليس لها إجهاد قص و ال إجهاد طولي. Prestressed Concert الخرسانة سابقة االجهاد ويستفاد من هذا الموضوع عند تصميم الجسور والمنشات الحديديه ,لكي نعرف التشوه الناجم بواسطه القوى الخارجيه 13 واستجابتها لألحمال التي تضع عليها Poisson’s Ratio نسبة بواسون ) ( نسبة عددية تعرف على انها النسبة بين االنفعال المستعرض الى االنفعال الطولى ) = (r/r) / (l/l حيث rهو نصف القطر نسبة بواسون قيمة مميزة لكل مادة نسبة بواسون دائما سالبة وذلك الن lتتناسب عكسيا مع r 14 r r L L L B F 15 الطاقة المختزنة فى االجسام المنفعلة تختزن االجسام المرنة عند اجهادها كمية من الطاقة )F = AY (L/L الشغل المبذول الحداث االستطالة )dw = F d(L 16 L L 17 W = (½) Stress × Strain × Volume 18 Hook’s Law 19 تمارين 20 -1ممثل يستخدم كابل للدوران فوق خشبة المسرح وكان الشد فى الحبل 940 Nما هو قطر الكابل الذى طولة 10 mومصنوع من اسالك الصلب اذا اردنا ان ال تحدث له استطالة اكبر من 0.5 cmتحت هذه الظروف حيث ان معامل المرونة 20 × 1010 N/m2؟ F A FL Y A ΔL Y L L A= (940 *10) / ((20*1010) × (0.005)) = 9.4 × 10-6 m2 يمكن حساب نصف قطر السلك r A π 21 = ((9.4 × 10-6) / ) = 1.7 × 10-3 m = 1.7 mm d = 2r = 3.4 mm -2اذا كان اقل مساحة مقطع لعظام الساق هى 6 × 10-4 m2احسب االجهاد الذى يتعرض له شخص يزن 700 Nعندما يقفز من ارتفاع مترين الى االرض خالل 5 × 10-3 sقارن هذا باجهاد الكسر الذى يساوى 16 × 107 Pa v = (2gh)1/2 = (2 × 9.8 × 2)1/2 = 6.2 ms-1 F = Ma )F = M (v/t ))= (700 / 9.8) × ((6.2 / (5×10-3 22 = 0.84 × 105 N اذا االجهاد الذى تتعرض لها الساق = (0.84 × 105 / 6 × 10-4 ) = 14 × 107 Pa نجد ان هذا االجهاد اقل من اجهاد الكسر لذلك ال تنكسر هذه الساق عند السقوط من مسافة مترين اوجد ماذا يحدث عند سقوطة من مسافة ثالث امتار 23 -3علق مصعد بسلكين من مادة واحدة قطر االول ثالث امثال قطر الثانى. احسب النسبة بين قوة الشد بينهما نفرض ان نصف قطر السلك الثانى aفيكون نصف قطر السلك االول 3a بما ان المصعد يثبت بالسلكين فيكون طول السلكين متساوى فى اى لحظة وكذلك الزيادة فى الطول ومعامل ينج متساوى للسلكين Y 1= Y2 24 F1 / F2 = 9 -4سلك من الصلب قطره 1mmيمكن تحمل شد مقداره 0.2 KN بفرض انك تريد كبل مصنوع من هذا السلك يتحمل شدا قدره 20 KN فكم يكون قطر الكابل. F1 F2 Y1 A1 Y2 A2 ΔL ΔL L L Y 1= Y2 25 -5اثبت ان نسبة بواسون تساوى ) (1/2للمواد التى ال يتغير حجمها تحت تأثير اجهاد الشد نفرض ان لدينا سلك طولة Lونصف قطره rفان حجمة يكون Vويعطى من العالقة V = r2L عند التأثير بإجهاد الشد فإن طوله يصبح ) (L+Lونصف قطرة(ينكمش) ) (r-rوحيث ان الحجم ثابت لذلك فإن dv = 2r L dr + r2 dL 26 الن الحجم ثابت فإن التغير فى الحجم مساوى للصفر 0 = 2r L dr + r2 dL 2r L dr = - r2dL )(dr/r) = - (1/2)(L/L )) = - ((dr/r) / (L/L = 1/2 27 مثال ( :)6عند تعليق كتله وزنها 45 Nفإن طوله يصبح . 32 cmاما عند اقصاء هذه الكتله وتعليق كتله اخرى وزنها , 55 Nفإن النابض يستطيل بمقدار 13 cmاحسب: :bالطول االصلي للنابض : aثابت النابض قانون هوك : المعلومات المعطاه في الوضع الثاني: اما الوضع االول وبالتالي طول النابض االصلي Dr. Ghada Abbady Elsayed 29 30 31 32 EXAMPLE A support column is compressed 3.46 ×10–4 m under a weight of 6.42 × 105 N. How much is the column compressed under a weight of 5.80 × 106 N? First find k: 33 Thank you for your attention