9th Grade Math Exam (Demo Variant) PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains a set of math questions for a 9th-grade exam. The questions cover topics such as algebra, geometry, and equations. It appears to be a demo version or sample material, and doesn't contain enough context to be considered a past paper.
Full Transcript
**9 -- sinf I -- CHSB DEMO variant** 1\) **(Q1.4 ball)** [*y* = *ax*^2^]{.math.inline} funksiya grafigi [*A*(−3;−4,5)]{.math.inline} nuqtadan oʻtadi. [*a* = ?]{.math.inline} A\) [\$\\frac{1}{2}\$]{.math.inline} B) {.math.inline} C) [\$- \\frac{1}{2}\$]{.math.inline} D) [ − 2]{.math.inline} 2\) **...
**9 -- sinf I -- CHSB DEMO variant** 1\) **(Q1.4 ball)** [*y* = *ax*^2^]{.math.inline} funksiya grafigi [*A*(−3;−4,5)]{.math.inline} nuqtadan oʻtadi. [*a* = ?]{.math.inline} A\) [\$\\frac{1}{2}\$]{.math.inline} B) {.math.inline} C) [\$- \\frac{1}{2}\$]{.math.inline} D) [ − 2]{.math.inline} 2\) **(B1.1 ball)** [\$y = \\frac{1}{2}x\^{2} + 6x - 3\$]{.math.inline} parabola uchi koordinatalarini toping. A\) [*P*~0~(−6;−24)]{.math.inline} B) [*P*~0~(−6;−18)]{.math.inline} C) [*P*~0~(−6;−15)]{.math.inline} D) [*P*~0~(−6;−21)]{.math.inline} 3\) **(B2.1 ball)** [*y* = 2*x*^2^ − 5*x* + 3]{.math.inline} funksiya grafigi koordinatalar tekisligining qaysi choraklaridan oʻtadi? A\) I; II; III B) I; II C) I; II; IV D) II; III; IV 4\) **(Q2.4 ball)** Tengsizlikning eng katta butun manfiy va eng kichik butun musbat yechimlari ayirmasini toping: [2*x*^2^ − 9*x* − 26 \> 0]{.math.inline} A\) [ − 4]{.math.inline} B) 9 C) 4 D) [ − 10]{.math.inline} 5\) **(B3.1 ball)** Tengsizlikni yeching: [\$\\frac{x\\left( 1 - x \\right)}{x + 5} \\geq 0\$]{.math.inline} A\) [(−∞;−5) ∪ \[0; 1\] ]{.math.inline} B) [(−∞;0) ∪ \[1; 5\]]{.math.inline} C) [( − ∞; 0\] ∪ \[1; 5\]]{.math.inline} D) [( − ∞; 0\] ∪ \[1; 5)]{.math.inline} 6\) **(Q3.4 ball)** [*x*]{.math.inline} ning qanday qiymatlarida [*y* = *x*^2^ − 4\|*x*\| + 3]{.math.inline} funksiya grafigi absissa oʻqi bilan umumiy nuqtaga ega boʻladi. A\) [1; 3]{.math.inline} B) [ ± 1]{.math.inline} C) [ ± 3]{.math.inline} D) [ ± 1; ± 3 ]{.math.inline} 7\) **(Q4.1 ball)** [\$y = \\frac{x - 5}{\\sqrt{4 - x²}}\$]{.math.inline} funksiya aniqlanish sohasini toping A\) [( − ∞; − 2) ∪ (2; ∞)]{.math.inline} B) [\[ − 2; 2\]]{.math.inline} C) [( − 2; 2)]{.math.inline} D) [(−∞;−2\] ∪ \[2; ∞)]{.math.inline} 8\) **(Q5.4 ball)** [*y* = 2*x*^2^ − 6*x* + 10]{.math.inline} funksiyaning oʻsish va kamayish oraliqlarini toping. A\) [( − ∞; 3\]]{.math.inline} da oʻsadi [\[3;∞) ]{.math.inline}da kamayadi B\) [( − ∞; 1, 5\]]{.math.inline} da oʻsadi [\[1,5;∞) ]{.math.inline}da kamayadi C\) [\[3;∞) ]{.math.inline}da oʻsadi, [( − ∞; 3\]]{.math.inline} da kamayadi D\) [\[1,5;∞) ]{.math.inline}da oʻsadi, [( − ∞; 1, 5\]]{.math.inline} da kamayadi 9\) **(Q6.4 ball)** Quyidagi funksiya juft yoki toq boʻlishini aniqlang: [\$y = \\frac{4\\ }{x\^{5}} + \\sqrt\[3\]{x}\$]{.math.inline} ; A\) Toq B) Juft C) Juft ham toq ham emas D) Aniqlab boʻlmaydi 10\) **(Q7.4 ball)** Tenglamani yeching: [\$\\sqrt{x\^{2} - 5x + 3} = 4 - x\\ \$]{.math.inline} A\) [\$4\\frac{2}{3}\$]{.math.inline} B) [\$4\\frac{1}{3}\$]{.math.inline} C) [\$- 4\\frac{1}{3}\$]{.math.inline} D) [⌀]{.math.inline} 11\) **(M1.5 ball)** Tengsizlikni yeching: [(*x* + 6)^4^ ≥ 1]{.math.inline} A\) [\[ − 5; ∞)]{.math.inline} B) [(−∞;−7\] ∪ \[ − 5; ∞)]{.math.inline} C) [(∞; − 7\]]{.math.inline} D) [\[5; ∞)]{.math.inline} 12\) **(Q8.4 ball)** Sistemani yeching: [\$\\left\\{ \\begin{matrix} x + y = 11 \\\\ x \\bullet y = 28 \\\\ \\end{matrix} \\right.\\ \$]{.math.inline} A\) (4; 7) B) (4; 7), (7;4) C) (7; 4) D) (2; 14) 13\) **(B1.4 ball)** ABCD parallelogrammda AC dioganal. Agar ∡BAC+∡BCA=110° boʻlsa, parallelogram D burchagi kattaligini toping. A\) 110° B) 70° C) 80° D) 100° 14\) **(Q1.5,2 ball)** Katetlari uzunliklari 15 cm va 20 cm boʻlgan toʻgʻri burchakli uchburchak yuzi va gipotenuzasiga tushirilgan balandligi topilsin. A\) [*S* = 150 *cm*^2^; *h*~*c*~ = 12 *cm*]{.math.inline} B) [*S* = 300 *cm*^2^; *h*~*c*~ = 12 *cm*]{.math.inline} C\) [*S* = 150 *cm*^2^; *h*~*c*~ = 24 *cm*]{.math.inline} D)[ *S* = 300 *cm*^2^; *h*~*c*~ = 24 *cm*]{.math.inline} 15\) **(B2.4 ball)** Toʻgʻri burchakli parallelepiped eni 2 cm, boʻyi 4 cm va balandligi 3 cm. Shu parallelepiped toʻla sirti yuzini toping. A\) [26 *cm*²]{.math.inline} B) [48 *cm*²]{.math.inline} C) [52 *cm*²]{.math.inline} D) [108 *cm*²]{.math.inline} 16\) **(Q2.5,2 ball)** ABCD trapetsiyada AD//BC va diagonallari O nuqtada kesishadi. Agar BC:AD = 2:5 va BD = 35 cm boʻlsa, OD = ? A\) 22 cm B) 10 cm C) 25 cm D) 30 cm 17\) **(Q3.5,2 ball)** Chizmadagi ABC uchburchakda MN//CD, CM=10 cm, MA=8 cm va DN=12 cm. NA=[*x*]{.math.inline}=? A\) 9,2 cm B) 9,6 cm C) 8,8 cm D) 10,8 cm ![](media/image2.png)18) **(Q4.5,2 ball)** Chizmada AB//CD, AB=8 cm, CD=28 cm va AD=27 cm. AP=? A\) 6 cm B) 8 cm C) 9 cm D) 6,8 cm 19\) **(M1.6 ball)** Katetlarining uzunliklari AC=12 cm va BC=16 cm boʻlgan ABC toʻgʻri burchakli uchburchakning AB gipotenuzasiga CD balandlik oʻtkazilgan. DB=? A\) 12,2 cm B) 12,6 cm C) 14,4 cm D) 12,8 cm 20\) **(Q5.5,2 ball)** Chizmada ABC toʻgʻri burchakli uchburchakning BC gipotenuza. [*BC* = 3*x* + 4]{.math.inline}, [*AB* = *x* + 2]{.math.inline} va [*AC* = 4*x*]{.math.inline}. [*S*~ABC~ = ?]{.math.inline} A\) 45 B) 36 C) 30 D) 60