Sets PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains questions categorized under sets in mathematics. The questions cover various concepts, such as types of sets, disjoint sets, complementary sets, subsets, power sets, cardinal numbers of sets, operations on sets, Venn diagrams, algebraic operations on sets, De Morgan's Law, and the number of elements in different sets. The document presents multiple-choice and other types of questions with solutions or answer choices.
Full Transcript
www.jeebooks.in Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in Downloaded from @Freebooksforjeeneet www.jeebooks.in Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in Downloaded from @Freeb...
www.jeebooks.in Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in Downloaded from @Freebooksforjeeneet www.jeebooks.in Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in Downloaded from @Freebooksforjeeneet www.jeebooks.in Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in Downloaded from @Freebooksforjeeneet www.jeebooks.in Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in Downloaded from @Freebooksforjeeneet www.jeebooks.in 1 Sets 6. A relation on the set A = {x : |x| < 3, x ÎZ }, Sets, Types of Sets, Disjoint Sets, Complementary Sets, Subsets, where Z is the set of integers is defined by TOPIC Ć Power Set, Cardinal Number of R = {(x, y) : y = |x|, x ¹ – 1}. Then the number of elements in Sets, Operations on Sets the power set of R is: [Online April 12, 2014] (a) 32 (b) 16 (c) 8 (d) 64 1. Set A has m elements and set B has n elements. If the total 7. Let X ={1,2,3,4,5}. The number of different ordered pairs number of subsets of A is 112 more than the total number (Y, Z) that can formed such that Y Í X , Z Í X and Y Ç Z of subsets of B, then the value of m×n is ______. is empty is : [Sep. 06, 2020 (I)] (a) 52 (b) 35 (c) 25 (d) 53 2. Let S = {1, 2, 3,... , 100}. The number of non-empty subsets 8. If A, B and C are three sets such that A Ç B = A Ç C and A of S such that the product of elements in A is even is : A È B = A È C , then [Jan. 12, 2019 (I)] (a) A = C (b) B = C (a) 2100 - 1 50 50 (b) 2 2 - 1 ( ) (c) A Ç B = f (d) A = B (c) 250 – 1 (d) 250 + 1 3. Let S = {x Î R : x ³ 0 and Venn Diagrams, Algebraic Operations on Sets, De Morgan’s TOPIC n 2| x - 3 | + x ( x - 6) + 6 = 0. Then S : Law, Number of Elements in Different Sets (a) contains exactly one element. (b) contains exactly two elements. 9. A survey shows that 73% of the persons working in an (c) contains exactly four elements. office like coffee, whereas 65% like tea. If x denotes the (d) is an empty set. percentage of them, who like both coffee and tea, then x æ1ö cannot be : [Sep. 05, 2020 (I)] 4. If f(x) + 2f ç ÷ = 3x , x ¹ 0 and èxø (a) 63 (b) 36 (c) 54 (d) 38 10. A survey shows that 63% of the people in a city read S = {x Î R : f(x) = f(–x)}; then S: newspaper A whereas 76% read newspaper B. If x% of the (a) contains exactly two elements. people read both the newspapers, then a possible value of (b) contains more than two elements. x can be : [Sep. 04, 2020 (I)] (c) is an empty set. (d) contains exactly one element. (a) 29 (b) 37 (c) 65 (d) 55 Let P = {q : sinq – cosq = 50 n 5. 2 cosq} and Q = {q : sinq + cosq = 11. Let U X i = U Yi = T , where each Xi contains 10 elements 2 sinq} be two sets. Then: i =1 i =1 [Online April 10, 2016] and each Yi contains 5 elements. If each element of the set T is an element of exactly 20 of sets Xi's and exactly 6 of (a) P Ì Q and Q - P ¹ f sets Yi's, then n is equal to [Sep. 04, 2020 (II)] (b) Q Ë P (a) 15 (b) 50 (c) 45 (d) 30 (c) P = Q (d) P Ë Q Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-2 Mathematics 12. Let X = {n Î N: l £ n £ 50}. If 16. Two newspapers A and B are published in a city. It is A = {n Î X: n is a multiple of 2} and known that 25% of the city population reads A and 20% B = {n Î X: n is a multiple of 7}, then the number of reads B while 8% reads both A and B. Further, 30% of elements in the smallest subset of X containing both A those who read A but not B look into advertisements and and B is __________. [Jan. 7, 2020 (II)] 40% of those who read B but not A also look into 2 advertisements, while 50% of those who read both A and 13. Let Z be the set of integers. If A = {xÎZ : 2(x + 2) ( x – 5x + 6) = 1} B look into advertisements. Then the percentage of the and B = {x Î Z : –3 < 2x – 1< 9}, then the number of subsets population who look into advertisements is: of the set A × B, is : [Jan. 12, 2019 (II)] [April. 09, 2019 (II)] (a) 215 (b) 218 (c) 212 (d) 210 (a) 13.9 (b) 12.8 (c) 13 (d) 13.5 14. In a class of 140 students numbered 1 to 140, all even 17. In a certain town, 25% of the families own a phone and numbered students opted Mathematics course, those 15% own a car; 65% families own neither a phone nor a whose number is divisible by 3 opted Physics course and car and 2,000 families own both a car and a phone. Consider those whose number is divisible by 5 opted Chemistry the following three statements : [Online April 10, 2015] course. Then the number of students who did not opt for (A) 5% families own both a car and a phone any of the three courses is: [Jan. 10, 2019 (II)] (B) 35% families own either a car or a phone (a) 102 (b) 42 (c) 1 (d) 38 (C) 40,000 families live in the town 15. Let A, B and C be sets such that f ¹ A Ç B Í C. Then Then, which of the following statements is not true ? (a) Only (A) and (C) are correct. [April 12, 2019 (II)] (b) Only (B) and (C) are correct. (c) All (A), (B) and (C) are correct. (a) B Ç C ¹ f (d) Only (A) and (B) are correct. (b) If ( A - B) Í C , then A Í C (c) (C È A) Ç (C È B) = C (d) If (A - C) Í B , then A Í B Downloaded from @Freebooksforjeeneet www.jeebooks.in Sets M-3 1. (28) 2m = 112 + 2n Þ 2m - 2n = 112 (c) sinq – cosq = 5. 2 cosq m -n Þ 2 (2 n - 1) = 2 (2 - 1) 4 3 Þ sinq = cosq + 2 cosq \ m = 7, n = 4 Þ mn = 28 æ 2 -1 ö 2. (b) Q Product of two even number is always even and = ( 2 + 1) cosq = ç ÷ cosq è 2 -1 ø product of two odd numbers is always odd. Þ ( 2 - 1) sinq = cosq \ Number of required subsets = Total number of subsets – Total number of subsets Þ sinq + cosq = 2 sinq having only odd numbers \ P= Q = 2100 – 250 = 250(250 – 1) 6. (b) A = {x : |x | < 3, x Î Z } 3. (b) Case-I: x Î[0,9] A = {–2, – 1, 0, 1, 2} R = {(x, y) : y = |x |, x ¹ -1} 2(3 - x ) + x - 6 x + 6 = 0 R = {(–2, 2), (0, 0), (1, 1), (2, 2)} R has four elements Þ x - 8 x + 12 = 0 Þ x = 4, 2 Number of elements in the power set of R Þ x = 16, 4 = 24 = 16 Since x Î[0,9] 7. (b) Let X = {1, 2, 3, 4, 5} \ x=4 n(x) = 5 Case-II: x Î[9, ¥] Each element of x has 3 options. Either in set Y or set Z or none. (Q Y Ç Z = f) 2( x - 3) + x - 6 x + 6 = 0 So, number of ordered pairs = 35 8. (b) Q B = ( B Ç A) È B Þ x - 4 x = 0 Þ x = 16,0 Since x Î[9, ¥] = ( A Ç C) È B \ x = 16 = ( A È B) Ç ( C È B) Hence, x = 4 & 16 æ 1ö = ( A È C) Ç ( B È C) 4. (a) f (x) + 2f ç ÷ = 3x....(1) è xø = ( A Ç B) È C æ 1ö 3 f ç ÷ + 2f (x) =....(2) è xø x = ( A Ç C) È C Adding (1) and (2) =C æ1ö 1 Þ f (x) + f ç ÷ = x +...(3) 9. (b) Given, n(C ) = 73, n(T ) = 65, n(C Ç T ) = x è ø x x Substracting (1) from (2) \ 65 ³ n(C Ç T ) ³ 65 + 73 - 100 æ1ö 3 Þ 65 ³ x ³ 38 Þ x ¹ 36. Þ f (x) - f ç ÷ = - 3x...(4) èxø x 10. (d) Let n(U ) = 100, then n(A) = 63, n(B) = 76 On adding (3) and (4) n( A Ç B ) = x 2 Þ f (x) = -x x Now, n( A È B ) = n( A) + n( B) - n( A Ç B) £ 100 2 -2 2 = 63 + 76 - x £ 100 f (x) = f (- x) Þ -x = +xÞx= x x x Þ x ³ 139 - 100 Þ x ³ 39 x2 = 2 or x = 2, - 2 Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-4 Mathematics Q n( A Ç B) £ n( A) Q = {6n: n Î N, 1 £ n £ 23} – P Þ x £ 63 Þ n(Q) = 19 \ 39 £ x £ 63 R = {15n: n Î N, 1 £ n £ 9} – P Þ n(R) = 5 50 n 11. (d) U X i = U Yi = T S = {10n: n Î N, 1 £ n £ 14} – P i =1 i =1 Þ n(S) = 10 Q n( X i ) = 10, n (Yi ) = 5 n(T) = 70 – n(P) – n(Q) – n(S) = 70 – 33 = 37 50 n n(V) = 46 – n(P) – n(Q) – n(R) = 46 – 28 = 18 So, U X i = 500, U Yi = 5n n(W) = 28 – n(P) – n(R) – n(S) = 28 – 19 = 9 i =1 i =1 Þ Number of required students 500 5n Þ = Þ n = 30 = 140 – (4 + 19 + 5 + 10 + 37 + 18 + 9) 20 6 = 140 – 102 = 38 12. (29) From the given conditions, 15. (d) (1), (2) and (4) are always correct. n(A) = 25, n(B) = 7 and n(A Ç B) = 3 In (3) option, n(A È B) = n(A) + n(B) – n(A Ç B) If A = C then A – C = f = 25 + 7 – 3 = 29 Clearly, f Í B but A Í B is not always true. 13. (a) Let x Î A, then 16. (a) Q 2( x+2)( x2 -5 x+6) = 1 Þ (x + 2)(x – 2)(x – 3) = 0 A B x = –2, 2, 3 25 20 8 A = {–2, 2, 3} Then, n(A) = 3 Let x Î B, then –3 < 2x – 1 < 9 % of people who reads A only = 25 – 8 = 17% –1 < x < 5 and x Î Z % of people who read B only = 20 – 8 = 12% \ B = {0, 1, 2, 3, 4} % of people from A only who read advertisement n(B) = 5 = 17 × 0.3 = 5.1% n(A ´ B) = 3 ´ 5 = 15 % of people from B only who read advertisement Hence, Number of subsets of A ´ B = 2 15 = 12 × 0.4 = 4.8% % of people from A & B both who read advertisement Maths = 8 × 0.5 = 4% 14. (d) T W \ total % of people who read advertisement S Chemistry P = 5.1 + 4.8 + 4 = 13.9% Q 17. (c) n(P) = 25% R n(C) = 15% V n ( P ¢ È C ¢ ) =65% Physics Þ n(P È C)¢ = 65% n ( P È C ) = 35% P = {30, 60, 90, 120} n ( P Ç C) = n ( P ) + n (C) - n ( P È C) Þ n(P) = 4 25 + 15 – 35 = 5% x × 5% = 2000 x = 40,000 Downloaded from @Freebooksforjeeneet www.jeebooks.in 2 Relations and Functions 5. The domain of the definition of the function Relations, Domain, Codomain and 1 Range of a Relation, Functions, f ( x) = + log10 ( x3 - x ) is: [April. 09, 2019 (II)] TOPIC Ć Domain, Codomain and Range of a 4 - x2 Function (a) (–1, 0) È (1, 2) È (3, ¥) (b) (–2, –1) È (–1, 0) È (2, ¥) 1. Let R1 and R2 be two relations defined as follows : (c) (–1, 0) È (1, 2) È (2, ¥) (d) (1, 2) È (2, ¥) R1 = {(a, b) Î R 2 : a 2 + b 2 Î Q} and 6. The range of the function R2 = {(a, b) Î R 2 : a 2 + b2 Ï Q} , where Q is the set of all x f ( x) = , x Î R , is [Online May 7, 2012] rational numbers. Then : [Sep. 03, 2020 (II)] 1+ x (a) Neither R1 nor R2 is transitive. (a) R (b) (– 1, 1) (c) R – {0} (d) [– 1, 1] (b) R2 is transitive but R1 is not transitive. (c) R1 is transitive but R2 is not transitive. 1 7. The domain of the function f ( x) = is (d) R1 and R2 are both transitive. x -x | x | +5 ö (a) (0, ¥ ) (b) (– ¥ , 0) 2. The domain of the function f ( x) = sin -1 æç ÷ is (c) (– ¥ , ¥ ) – {0} (d) (– ¥ , ¥ ) è x2 +1 ø 8. Domain of definition of the function (-¥, - a] È [a, ¥]. Then a is equal to : 3 f ( x) = + log10 ( x 3 - x) , is [Sep. 02, 2020 (I)] 4 - x2 17 17 - 1 1 + 17 17 (a) ( -1,0) È (1,2) È ( 2, ¥) (b) (a, 2) (a) (b) (c) (d) +1 2 2 2 2 (c) ( -1,0) È ( a,2) (d) (1,2) È (2, ¥) 3. If R = {(x, y) : x, y Î Z, x2 + 3 y 2 £ 8} is a relation on the Even and Odd Functions, Explicit set of integers Z, then the domain of R–1 is : and Implicit Functions, Greatest [Sep. 02, 2020 (I)] Integer Function, Periodic (a) {–2, –1, 1, 2} (b) {0, 1} TOPIC n Functions, Value of a Function, (c) {–2, –1, 0, 1, 2} (d) {–1, 0, 1} Equal Functions, Algebraic Operations on Functions x 4. Let f : R ® R be defined by f ( x ) = , x Î R. Then 1 + x2 9. Let [t] denote the greatest integer £ t. Then the equation the range of f is : [Jan. 11, 2019 (I)] in x, [x]2 + 2[x + 2] – 7 = 0 has : [Sep. 04, 2020 (I)] (a) exactly two solutions é 1 1ù (a) ê - , ú (b) R – [–1, 1] (b) exactly four integral solutions ë 2 2û (c) no integral solution é 1 1ù (d) infinitely many solutions (c) R - ê - , ú (d) (–1, 1) – {0} ë 2 2û Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-6 Mathematics 10. Let f (x) be a quadratic polynomial such that f (–1) + f (2) = 15. Let f be an odd function defined on the set of real numbers 0. If one of the roots of f (x) = 0 is 3, then its other root lies such that for x ³ 0, f(x) = 3 sin x + 4 cos x. in : [Sep. 02, 2020 (II)] 11p (a) (–1, 0) (b) (1, 3) (c) (–3, –1) (d) (0, 1) Then f(x) at x = - is equal to: [Online April 11, 2014] 6 x[ x] 11. Let f (1, 3) ® R be a function defined by f (x) = , (a) 3 +2 3 3 (b) - + 2 3 1 + x2 2 2 where [x] denotes the greatest integer £ x. Then the range of f is: [Jan. 8, 2020 (II)] 3 3 (c) -2 3 (d) - - 2 3 2 2 æ 2 3ö æ 3 4 ö æ 2 1 ö æ 3 4ö (a) çè , ÷ø È çè , ÷ø (b) çè , ÷ø È çè , ø÷ 16. A real valued function f (x) satisfies the functional equation 5 5 4 5 5 2 5 5 f (x – y) = f (x) f (y) – f (a – x) f (a + y) æ 2 4ö æ 3 4ö where a is a given constant and f (0) = 0, f (2a – x) is equal (c) çè , ÷ø (d) çè , ÷ø to 5 5 5 5 (a) – f (x) (b) f (x) 1- x ö æ 2x ö (c) f (a) + f (a – x) (d) f (– x) 12. If f(x) = loge æç ÷ , |x| < 1, then f ç ÷ is equal to : è 1+ x ø è 1+ x2 ø 17. The graph of the function y = f(x) is symmetrical about the line x = 2, then [April 8, 2019 (I)] (a) 2f(x) (b) 2f(x2) (c) (f(x)) 2 (d) –2f(x) (a) f ( x ) = - f (- x) (b) f (2 + x) = f (2 - x) 13. Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where (c) f ( x ) = f ( - x) (d) f ( x + 2) = f ( x - 2) f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals : [April. 08, 2019 (II)] 18. If f : R ® R satisfies f ( x + y ) = f ( x) + f ( y ) , for all x, (a) 2f1(x) f1(y) (b) 2f1(x + y) f1(x – y) n (c) 2f1(x)f2(y) (d) 2f1(x + y) f2(x – y) y Î R and f(1) = 7, then S f (r ) is r=1 é 1 3n ù 14. Let f ( n ) = ê + n , where [n] denotes the greatest 7 n (n + 1) 7n ë 3 100 úû (a) 2 (b) 2 56 7 (n + 1) integer less than or equal to n. Then å f ( n) is equal to: (c) 2 (d) 7 n + ( n + 1) n=1 [Online April 19, 2014] (a) 56 (b) 689 (c) 1287 (d) 1399 Downloaded from @Freebooksforjeeneet www.jeebooks.in Relations and Functions M-7 Þ 1 ³ 4y2 (a) For R1 let a = 1 + 2, b = 1 - 2, c = 8 1/ 4 1. 1 aR1b Þ a 2 + b2 = (1 + 2)2 + (1 - 2) 2 = 6 Î Q Þ |y| £ 2 bR1c Þ b2 + c 2 = (1 - 2)2 + (81/ 4 )2 = 3 Î Q 1 1 Þ - £ y£ 2 2 aR1c Þ a 2 + c2 = (1 + 2)2 + (81/ 4 )2 = 3 + 4 2 Ï Q é 1 1ù \ R1 is not transitive. Þ The range of f is ê - , ú. ë 2 2û For R2 let a = 1 + 2, b = 2, c = 1 - 2 5. (c) To determine domain, denominator ¹ 0 and x3 – x > 0 aR2b Þ a + b = (1 + 2) + ( 2) = 5 + 2 2 Ï Q 2 2 2 2 i.e., 4 – x2 ¹ 0 x ¹ ±2...(1) and x (x – 1) (x + 1) > 0 bR2 c Þ b 2 + c 2 = ( 2)2 + (1 - 2)2 = 5 - 2 2 Ï Q – + – + aR2c Þ a 2 + c2 = (1 + 2) 2 + (1 - 2) 2 = 6 Î Q x Î (– 1, 0) È (1, ¥)...(2) \ R2 is not transitive. Hence domain is intersection of (1) & (2). | x | +5 ö 2. (c) Q f ( x) = sin -1 æç i.e., x Î (–1, 0) È (1, 2) È (2, ¥) è x 2 + 1 ÷ø | x | +5 x \ -1 £ £1 6. (b) f ( x) = 1 + x , x Î R x2 + 1 Þ| x | +5 £ x2 + 1 [Q x 2 + 1 ¹ 0] x If x > 0, | x | = x Þ f ( x ) = 1+ x Þ x2 - | x | -4 ³ 0 which is not defined for x = – 1 æ 1 - 17 ö æ 1 + 17 ö x Þ ç| x | - ÷ ç| x | - 2 ÷ ³ 0 If x < 0, | x | = – x Þ f ( x ) = è 2 øè ø 1- x which is not defined for x = 1 æ 1 + 17 ö é1 + 17 ö Thus f(x) defined for all values of R except 1 and – 1 Þ x Î ç -¥, - ÷ Èê , ¥÷ è 2 ø ë 2 ø Hence, range = (– 1, 1). 1 + 17 f ( x) = 1 \a = 7. (b) , f (x) is define if | x | – x > 0 2 x -x 3. (d) Since, R = {(x, y) : x, y Î Z, x2 + 3 y 2 £ 8} Þ | x | > x, Þ x < 0 Hence domain of f (x) is (– ¥, 0) \ R = {(1, 1), (2, 1), (1, - 1), (0, 1), (1, 0)} 3 Þ DR-1 = {-1, 0, 1} 8. (a) f ( x) = + log10 ( x 3 - x) 4 - x2 x , x ÎR 4 - x 2 ¹ 0; x 3 - x > 0; 4. (a) f(x) = 1 + x2 x ¹ ± 4 and - 1 < x < 0 or 1 < x < ¥ x Let, y = 1 + x2 – + + – –1 0 1 1 ± 1- 4 y2 Þ yx2 – x + y = 0 Þ x = 2 \ D = ( -1, 0) È (1, ¥) - { 4} Þ 1 – 4y2 ³ 0 D = ( -1, 0) È (1, 2) È (2, ¥). Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-8 Mathematics 9. (d) The given equation æ 1 + x2 - 2 x ö æ 1- x ö 2 [ x]2 + 2[ x] + 4 - 7 = 0 = log çç 2 ÷ ÷ = log ç 1+ x ÷ è 1+ x + 2x ø è ø Þ [ x]2 + 2[ x] - 3 = 0 æ 1- x ö Þ [ x]2 + 3[ x] - [ x] - 3 = 0 = 2 log ç ÷ = 2f (x) è 1+ x ø Þ ([ x] + 3)([ x] - 1) = 0 Þ [ x] = 1 or –3 13. (a) Given function can be written as Þ x Î[ -3, - 2) È [1, 2) æ a x + a- x ö æ a x - a-x ö \ The equation has infinitely many solutions. f (x) = ax = çç ÷+ç ÷ 2 ÷ ç 2 ÷ è ø è ø 10. (a) Let f ( x) = ax 2 + bx + c Given : f ( -1) + f (2) = 0 a x + a-x where f1(x) = is even function 2 a - b + c + 4a + 2b + c = 0 Þ 5a + b + 2c = 0...(i) a x - a-x f2(x) = is odd function and f (3) = 0 Þ 9a + 3b + c = 0...(ii) 2 From equations (i) and (ii), Þ f1(x + y) + f1(x – y) a = b = c Þ a b c = = æ a x+ y + a - x - y ö æ a x - y + a - x + y ö 1 - 6 18 - 5 15 - 9 -5 13 6 = çç ÷+ç ÷ 2 ÷ ç 2 ÷ è ø è ø c -6 Product of roots, ab = = and a = 3 1é x y a 5 = a (a + a - y ) + a - x (a y + a - y ) ù 2ë û -2 Þb= Î ( -1, 0) 5 (a x + a - x )(a y + a - y ) = = 2f1(x). f1(y) 2 ì x ïï 2 ; x Î (1, 2) é 1 3n ù x +1 (d) Let f (n) = ê + n ë 3 100 úû 11. (b) f ( x) í 14. ï 2 x ; x Î[2,3) îï x 2 + 1 where [n] is greatest integer function, é 3n ù = ê0.33 + n ì 1 - x2 ë 100 úû ï ; x Î (1, 2) ï 1+ x2 For n = 1, 2,..., 22, we get f (n) = 0 f ¢( x ) í and for n = 23, 24,..., 55, we get f (n) = 1 × n 2 ï1 - 2 x ï ; x Î [2,3) For n = 56, f (n) = 2 × n î 1+ x 2 56 \ f(x) is a decreasing function So, å f (n) = 1 (23) + 1 (24) +... + 1 (55) + 2(56) n =1 æ 2 1 ö æ 6 4ù \ y Îç , ÷ Èç , ú = (23 + 24 +... + 55) + 112 è 5 2 ø è 10 5 û 33 = [46 + 32] + 112 æ 2 1 ö æ 3 4ù 2 Þ y Îç , ÷ È ç , ú è 5 2 ø è 5 5û 33 = (78) + 112 = 1399. æ1- x ö 2 12. (a) f (x) = log ç ÷ ,|x| 0 = 4cos6 - 4sin 6 - 3cos 4 + 3sin 4 8 8 8 8 Þ 2[sin q + cos q - 1] > 0 éæ p p öù = 4 êç cos 2 - sin 2 ÷ ú æ pö 1 ëè 8 8 øû Þ sin q + cos q > 1 Þ sin ç q + ÷ > è 4ø 2 éæ 4 p 4p 2p 2 p öù êç sin 8 + cos 8 + sin 8 cos 8 ÷ ú p æ p 3p ö æ pö ë è øû Þ q+ Î ç , ÷ Þ q Î ç 0, ÷ 4 è4 4ø è 2ø éæ p p öæ p p öù -3 êç cos2 - sin 2 ÷ç cos 2 + sin 2 ÷ ú 12. (a) Let the height of the tower be h and distance of the ëè 8 8 øè 8 8 øû foot of the tower from the point A is d. pé æ p pö ù By the diagram, = cos ê 4 ç1 - sin 2 cos 2 ÷ - 3ú 4ë è 8 8ø û Q 1 é 1ù 1 = ê1- ú = 2ë 2 û 2 2 2 sin a 1 1 - cos 2 b 1 9. (1) = and = 30° 2 cos a 7 2 10 B h 2 sin b 1 Þ = 30 m 2 10 45° 1 1 \ tan a = and sin b = A d P 7 10 1 h tan b = tan 45 = =1 3 d 1 2 h=d...(i) 2. 2 tan b 3 h - 30 \ tan 2b = = 3 =3= tan 30 = 1 - tan b 1 - 2 1 8 4 d 9 9 3(h - 30) = d...(ii) tan a + tan 2b tan(a + 2b) = Put the value of h from (i) to (ii), 1 - tan a tan 2b 3d = d + 30 3 1 3 4 + 21 + = 7 4 1 3 = 28 = 1 25 d= 30 3 3 -1 = 15 3 ( ) ( 3 + 1 = 15 3 + 3 ) 1-. 7 4 28 Downloaded from @Freebooksforjeeneet www.jeebooks.in Trigonometric Functions M-17 13. (b) cos2 10 – cos10 cos50 + cos2 50 2 æ5ö 12 æ 1 + cos 20° ö æ 1 + cos100° ö 1 cos (a – b) = 1 - ç ÷ = =ç ÷+ç ÷ - (2cos10° cos50°) è 13 ø 13 è 2 ø è 2 ø 2 5 1 1 Þ tan (a – b) = = 1 + (cos 20° + cos100°) - [cos60° + cos 40°] 12 2 2 Now, tan 2a = tan ((a + b) + (a – b)) æ 1ö 1 4 5 = ç1 - ÷ + [cos20° + cos100° - cos 40°] + è 4ø 2 tan(a + b) + tan(a - b) 3 12 = 63 = = 4 5 16 3 1 1 - tan(a + b).tan(a - b) 1-. = + [2cos 60° ´ cos 40° - cos 40°] 3 12 4 2 = 3 17. (d) Q The given equation is 4 sin4 a + 4 cos4 b + 2 = 4 2 sin a × cos b, a, b Î [0, p] Then, by A.M., G.M. ineqality; 14. (a) A.M. ³ G.M. 5 sin 4 a + 4cos 4 b + 1 + 1 1 15º 10 4 ( ) ³ sin 4 a × 4 cos 4 b × 1 ×1 4 sin4a + 4cos4b + 1 + 1 ³ 4 2 sin a× |cos b | 5 Inequality still holds when cosb < 0 but L.H.S. is positive 15º than cosb > 0, then d L.H.S. = R.H.S By the diagram, 1 \ sin4 a = 1 and cos4 b = ( ) 4 5 5 5 3 +1 tan15 = Þd = = p p d tan15 3 -1 Þ a= and b = 2 4 ( 5 4+2 3 ) =5 2+ 3 \ cos (a + b) – cos (a – b) = 2 ( ) æp ö æp ö = cos çè + b÷ø - cos çè - bø÷ 1 2 2 15. (a) Q sin(60 + A).sin(60 – A) sinA = sin3A 4 p \ sin10 sin50 sin70 = sin10 sin(60 – 10) = –sinb – sinb = -2sin =- 2 4 1 1 k k sin(60 + 10) = 4 sin30 18. (a) fk(x) = (sin x + cos x ) k 1 1 1 Þ sin10 sin30 sin50 sin70 = sin230 = 4 4 f4(x) = [sin x + cos x] 4 16 4 16. (b) Q a + b and a – b both are acute angles. 1é (sin 2 x) 2 ù = 4 ê(sin x + cos x ) - 2 2 2 2 ú 3 æ3ö 4 ë 2 û cos (a + b) = , then sin (a + b) = 1 - ç ÷ = 5 è5ø 5 1 é (sin 2 x )2 ù 4 = 4 ê1 - ú tan (a + b) = ë 2 û 3 5 1 6 6 And sin (a – b) = , then f6(x) = [sin x + cos x ] 13 6 1é 3 2ù = ê(sin x + (cos x) - (sin x) ú 2 2 2 6ë 4 û Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-18 Mathematics 1é 3 2ù 17 æ 2 2 1 ö 17 9 17 = ê1 - (sin 2 x) ú - £ ç cos x - ÷ - £ - 6ë 4 û 16 è 4 ø 16 16 16 1 1 (sin 2 x )2 1 ìïæ 17 üï 1 2 Now f4(x) – f(6)(x) = - - + (sin 2 x )2 17 1ö 4 6 8 8 ³ -4 íç cos 2 x - ÷ - ý ³ 4 è 4ø 16 ïþ 2 îï 1 = 17 12 M= p p p p 4 19. (a) A = cos.cos 3... cos 10.sin 10 1 22 2 2 2 m= 2 1æ p p p pö = çè cos 2.cos 3... cos 9 sin 9 ÷ø 17 2 15 2 2 2 2 2 M–m= - = 4 4 4 1æ p pö 1 p = ç cos 2.sin 2 ÷ø = 9 sin 3 28 è 2 2 2 2 22. (b) Let cos a + cos b = 2 1 = a+b a -b 3 512 Þ 2 cos cos =...(i) 20. (a) We have 2 2 2 5 tan2 x – 5 cos2 x = 2 (2 cos2 x –1 ) + 9 1 Þ 5 tan2 x – 5 cos2 x = 4 cos2 x –2 + 9 and sin a + sin b = 2 Þ 5 tan2 x = 9 cos2 x + 7 Þ 5 (sec2 x – 1) = 9 cos2 x + 7 a +b a -b 1 Þ 2sin cos =...(ii) Let cos2 x = t 2 2 2 5 On dividing (ii) by (i), we get Þ - 9t - 12 = 0 t æ a + bö 1 Þ 9t2 + 12t – 5 = 0 tan ç è 2 ÷ø = 3 Þ 9t2 + 15t – 3t – 5 = 0 Þ (3t – 1) (3t + 5) = 0 a+b Given : q = Þ 2q = a + b 1 5 2 Þ t = as t ¹ –. 3 3 Consider sin 2q + cos 2q = sin (a + b) + cos (a + b) æ1ö 1 2 1 cos 2x = 2 cos2 x – 1 = 2 ç ÷ – 1 = – 1- è3ø 3 3 + 9 6 8 7 + = 2 = = æ 1ö 1 1 10 10 5 7 1+ 1+ cos 4x = 2 cos2 2x – 1 = 2 ç - ÷ - 1 = - 9 9 è 3ø 9 1 p+q p-q 21. (b) 4 + sin2 2x – 2 cos4 x 23. (b) cosecq = , sin q = 2 p-q p+q 4 + 2 (1 – cos2 x) cos2 x – 2 cos4 x 2 æ p - qö 2 pq ïì cos2 x 1 1 ïü cos q = ± 1 - sin 2 q = 1 - ç = - 4 ícos 4 x - -1 + - ý è p + q ø÷ ( p + q) îï 2 16 16 þï p q q ìïæ 1ö 2 17 üï cot cot - 1 cot - 1 - 4 íç cos 2 x - ÷ - ý æ p qö 4 2 2 è cot ç + ÷ = = îï 4ø 16 ïþ è 4 2ø p q q cot + cot cot + 1 2 0 < cos x < 1 4 2 2 - 1 1 3 £ cos2 x - £ q q cos - sin 4 4 4 2 2 = q q æ 1ö 2 9 cos + sin 0 £ ç cos2 x - ÷ £ 2 2 è 4ø 16 On rationali ing denominator, we get Downloaded from @Freebooksforjeeneet www.jeebooks.in Trigonometric Functions M-19 Þ [sina + sin b + sin g ]2 + (cos a + cos b + cos g )2 = 0 æ q qöæ q qö cos - sin cos + sin Þ sina + sin b + sin g = 0 and cos a + cos b + cos g = 0 ç 2 2÷ ç 2 2÷ ç q q÷ç q q÷ \ A and B both are true. çè cos + sin ÷ø çè cos + sin ÷ø 27. (c) Given that p2 + q2 = 1 2 2 2 2 \ p = cos q and q = sin q satisfy the given equation cos q Then p + q = cos q + sin q = 2 q 2q q q sin + cos + 2sin cos We know that 2 2 2 2 - a 2 + b2 £ a cos q + b sin q £ a 2 + b 2 cos q 2 pq / ( p + q ) pq q = = = = \ – 2 £ cos q + sin q £ 2 1 + sin q ( p - q) p p 1+ Hence max. value of p + q is p+q 2 1 1 24. (d) A = sin 2 x + cos 4 x 28. (c) cos x + sin x = Þ 1 + sin 2 x = 2 4 = sin 2 x + cos 2 x(1 - sin 2 x ) 3 Þ sin 2 x = - , 1 4 = sin 2 x + cos 2 x - (2 sin x.cos x) 2 4 \ p < 2x < 2p 1 2 = 1 - sin (2 x ) p Þ 7 " n ³ 1 (b) an < 7 " n ³ 1 the following is true (c) an < 4 " n ³ 1 (d) an < 3 " n ³ 1 Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-24 Mathematics 1. (a) P(n) = n2 – n + 41 Adding 2K + 1 on both sides Þ P(3) = 9 – 3 + 41 = 47 (prime) Þ 1 + 3 + 5.... + (2 K - 1) + 2 K + 1 & P(5) = 25 – 5 + 41 = 61 (prime) \ P(3) and P(5) are both prime i.e., true. = 3 + K 2 + 2K + 1 = 3 + (K + 1)2 = S ( K + 1) 2. (b) S(K) = 1+3+5+...+(2K – 1) = 3 + K2 \ S ( K ) Þ S ( K + 1) S (1) :1 = 3 + 1, which is not true 3. (b) For n = 1, a1 = 7 < 7. Let am < 7. Q S (1) is not true. \ P.M.I cannot be applied Then am + 1 = 7 + am Let S(K) is true, i.e. Þ a2m + 1 = 7 + am < 7 + 7 < 14. S(K) : 1 + 3 + 5.... + (2 K - 1) = 3 + K 2 Þ am + 1 < 14 < 7; So, by the principle of mathematical induction an < 7, " n. Downloaded from @Freebooksforjeeneet www.jeebooks.in Complex Numbers and Quadratic Equations M-25 5 Complex Numbers and Quadratic Equations z -i Integral Powers of lota, Algebraic 6. Let z be a complex number such that =1 Operations of Complex Numbers, z + 2i TOPIC Ć Conjugate, Modulus and Argument 5 or Amplitude of a Complex Number and z =. Then the value of |z + 3i| is : 2 [Jan. 9, 2020 (I)] 3 + i sin q 1. If , q Î [0, 2p], is a real number, then an argument 7 15 4 - i cos q (a) 10 (b) (c) (d) 2 3 2 4 of sinq + icosq is: [Jan. 7, 2020 (II)] 7. If z be a complex number satisfying |Re(z)| + |Im(z)| = 4, -1 æ 4 ö -1 æ 3 ö (a) p - tan çè ÷ø (b) p - tan çè ÷ø then |z| cannot be: [Jan. 9, 2020 (II)] 3 4 17 (a) (b) (c) (d) -1 æ 3 ö -1 æ 4ö 10 7 8 (c) - tan çè ÷ø 2 (d) tan çè ÷ø 4 3 2z - n 8. Let z Î C with Im(z) = 10 and it satisfies = 2i - 1 for 2. If the four complex numbers z, z , z - 2Re( z ) and 2z + n z - 2Re( z ) represent the vertices of a square of side some natural number n. Then : [April 12, 2019 (II)] 4 units in the Argand plane, then |z| is equal to : (a) n = 20 and Re(z) = –10 [Sep. 05, 2020 (I)] (b) n = 40 and Re(z) = 10 (a) 4 2 (b) 4 (c) 2 2 (d) 2 (c) n = 40 and Re(z) = –10 30 (d) n = 20 and Re(z) = 10 æ -1 + i 3 ö 3. The value of çç ÷÷ is : [Sep. 05, 2020 (II)] 9. The equation z - i = z - 1 , i = -1 , represents: è 1- i ø [April 12, 2019 (I)] (a) – 215 (b) 215 i (c) – 215 i (d) 65 m/2 n/3 1 æ1+ iö æ1+ iö (a) a circle of radius. If ç =ç = 1, (m, n Î N ) , then the 2 è 1 - i ÷ø è i - 1÷ø 4. (b) the line through the origin with slope 1. greatest common divisor of the least values of m and n is (c) a circle of radius 1. _________. [Sep. 03, 2020 (I)] (d) the line through the origin with slope – 1. 5. If z1, z2 are complex numbers such that Re(z1) = |z1 – 1|, (1 + i )2 2 p 10. If a > 0 and = , has magnitude , then is Re(z2) = |z2 – 1| and arg( z1 - z2 ) = , then Im( z1 + z2 ) is a -i 5 6 equal to : [April 10, 2019 (I)] equal to : [Sep. 03, 2020 (II)] 1 3 3 1 2 3 1 (a) - - i (b) - - i (a) (b) 2 3 (c) (d) 5 5 5 5 3 2 3 1 3 1 3 (c) - i (d) - + i 5 5 5 5 Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-26 Mathematics 11. If z and w are two complex numbers such that zw = 1 and 1 + (1 – 8a) z 18. The set of all a Î R, for which w = is a purely 1– z p arg(z) – arg(w) = 2 , then: [April 10, 2019 (II)] imaginary number, for all z Î C satisfying |z| = 1 and Re z ¹ 1, is [Online April 15, 2018] -1 + i (a) {0} (b) an empty set (a) zw = i (b) z w = 2 ì 1 1ü (c) í0, , – ý (d) equal to R 1- i î 4 4þ (c) zw = -i (d) z w = 2 2 + 3isin q 5 + 3z 19. A value ofqfor which is purely imaginary, is: 1 - 2isin q 12. Let z Î C be such that |z| < 1. If w = 5(1 - z ) , then : [April 09, 2019 (II)] -1 æ 3 ö -1 æ 1 ö (a) 5 Re (w) > 4 (b) 4 Im (w) > 5 (a) sin çç 4 ÷÷ (b) sin ç ÷ (c) 5 Re (w) > 1 (d) 5 Im (w) < 1 è ø è 3ø z -a p p 13. If (a Î R ) is a purely imaginary number and | | = 2, (c) (d) z +a 3 6 then a value of a is : [Jan. 12, 2019 (I)] 20. If is a non-real complex number, then the minimum 1 lmz 5 (a) 2 (b) 1 (d) 2 (c) value of is : [Online April 11, 2015] 2 (lmz )5 14. Let 1 and 2 be two complex numbers satisfying | 1| = 9 (a) –1 (b) –4 (c) –2 (d) –5 and | 2 | – |3|–|4i||=|4. Then the minimum value of | 1 – 2| is : [Jan. 12, 2019 (II)] 21. If z is a complex number such that z ³ 2, then the minimum (a) 0 (b) 2 (c) 1 (d) 2 1 value of z + : 15. Let be a complex number such that + =3+i 2 ( where i = -1. ) (a) is strictly greater than 5 2 Then | | is equal to : [Jan. 11, 2019 (II)] 3 5 34 5 41 5 (b) is strictly greater than but less than (a) (b) (c) (d) 2 2 3 3 4 4 Let 1 and 5 16. 2 be any two non- ero complex numbers such (c) is equal to 2 3 2 that 3 | = 1 + 2 (d) lie in the interval (1, 2) 1 | = 4 | 2 |. If 2 3 then: 2 1 22. For all complex numbers of the form 1 + ia, a Î R , if [Jan. 10 2019 (II)] 2 = x + iy, then [Online April 19, 2014] (a) y2 – 4x + 2 = 0 (b) y2 + 4x – 4 = 0 5 (a) Re( ) = 0 (b) | | = (c) y2 – 4x – 4 = 0 (d) y2 + 4x + 2 = 0 2 -i 1 17 23. Let ¹ – i be any complex number such that is a (c) | | = (d) Im( ) = 0 +i 2 2 purely imaginary number. ì æ p ö 3 + 2isin q ü + 1 17. Let A= íqÎ ç - , p ÷ : is purely imaginary ý. Then is: [Online April 12, 2014] î è 2 ø 1 - 2isin q þ (a) ero Then the sum of the elements in A is: [Jan. 9 2019 (I)] (b) any non- ero real number other than 1. 5p 3p 2p (c) any non- ero real number. (a) (b) p (c) (d) 6 4 3 (d) a purely imaginary number. Downloaded from @Freebooksforjeeneet www.jeebooks.in Complex Numbers and Quadratic Equations M-27 24. If 1, 2 and 3, 4 are 2 pairs of complex conugate numbers, 2 2 then 30. z1 + z2 + z1 - z2 is equal to [Online May 26, 2012] æ ö æ ö arg ç 1 ÷ + arg ç 2 ÷ equals: [Online April 11, 2014] (a) 2 ( z1 + z2 ) ( (b) 2 z1 + z2 2 2 ) è 4ø è 3ø 2 2 (c) z1 z2 (d) z1 + z2 p 3p 31. Let Z and W be complex numbers such that |Z| = |W|, and (a) 0 (b) (c) (d) p 2 2 arg Z denotes the principal argument of Z. 25. Let w (Im w ¹ 0) be a complex number. Then the set of all [Online May 19, 2012] complex number satisfying the equation Statement 1:If arg Z + arg W = p, then Z = -W. w - w = k (1 - ) , for some real number k, is Statement 2: |Z| = |W|, implies arg Z – arg W = p. (a) Statement 1 is true, Statement 2 is false. [Online April 9, 2014] (b) Statement 1 is true, Statement 2 is true, Statement 2 is (a) { : = 1} (b) { : = } a correct explanation for Statement 1. (c) Statement 1 is true, Statement 2 is true, Statement 2 is (c) { : ¹ 1} (d) { : = 1, ¹ 1} not a correct explanation for Statement 1. (d) Statement 1 is false, Statement 2 is true. 26. If z is a complex n umber of unit modulus and 32. Let Z1 and Z2 be any two complex number. æ 1+ z ö Statement 1: Z1 - Z 2 ³ Z1 - Z 2 argument q, then arg ç è 1 + z ÷ø equals: Statement 2: Z1 + Z 2 £ Z1 + Z 2 [Online May 7, 2012] p (a) Statement 1 is true, Statement 2 is true, Statement 2 is (a) –q (b) –q (c) q (d) p – q a correct explanation of Statement 1. 2 (b) Statement 1 is true, Statement 2 is true, Statement 2 is 27. Let z satisfy| z | = 1 and = 1– z. not a correct explanation of Statement 1. (c) Statement 1 is true, Statement 2 is false. Statement 1 : z is a real number. (d) Statement 1 is false, Statement 2 is true. p 33. The number of complex numbers such that Statement 2 : Principal argument of is |z – 1| = |z + 1| = |z – i| equals 3 (a) 1 (b) 2 (c) ¥ (d) 0 [Online April 25, 2013] 1 (a) Statement 1 is true Statement 2 is true; Statement 2 is 34. The conugate of a complex number is then that a correct explanation for Statement 1. i –1 (b) Statement 1 is false; Statement 2 is true complex number is (c) Statement 1 is true, Statement 2 is false. –1 1 –1 1 (a) (b) (c) (d) (d) Statement 1 is true; Statement 2 is true; Statement 2 is i –1 i +1 i +1 i –1 not a correct explanation for Statement 1. 1 æx yö If z = x - i y and z 3 = p + iq, then çè p + q ø÷ ( p + q ) 2 2 35. æ 1+ z 2 ö 28. Let a = Im ç ÷ , where z is any non- ero complex ç 2iz ÷ is equal to è ø (a) –2 (b) –1 (c) 2 (d) 1 number. [Online April 23, 2013] 36. Let and w be complex numbers such that z + i w = 0 The set A = {a : | z | = 1 and z ¹ ±1 } is equal to: and arg zw = p. Then arg equals (a) (– 1, 1) (b) [– 1, 1] (c) [0, 1) (d) (– 1, 0] 5p p 3p p (a) (b) (c) (d) Z2 4 2 4 4 29. If Z1 ¹ 0 and Z2 be two complex numbers such that Z1 æ1+ i ö x 37. If ç ÷ = 1 then è1- i ø 2Z1 + 3Z 2 is a purely imaginary number, then 2Z - 3Z is equal to: (a) x = 2n + 1 , where n is any positive integer 1 2 (b) x = 4n , where n is any positive integer [Online April 9, 2013] (c) x = 2n , where n is any positive integer (a) 2 (b) 5 (c) 3 (d) 1 (d) x = 4n + 1 , where n is any positive integer.. Downloaded from @Freebooksforjeeneet EBD_8344 www.jeebooks.in M-28 Mathematics 38. If z and w are two non- ero complex numbers such that æ z -1 ö p 46. If Re çè ÷ = 1, where z = x + iy, then the point (x, y) lies zw = 1 and Arg ( z ) - Arg (w ) = , then zw is equal to 2z + i ø 2 on a: [Jan. 7, 2020 (I)] (a) – 1 (b) 1 (c) – i (d) i æ 1 3ö (a) circle whose centre is at èç - , - ø÷. 39. If | – 4 | < | – 2 |, its solution is given by 2 2 (a) Re(z) > 0 (b) Re(z) < 0 2 (c) Re(z) > 3 (d) Re(z) > 2 (b) straight line whose slope is -. 40. z and w are two non ero complex numbers such that 3 | z | = | w| and Arg + Arg w = p then equals 3 (a) w (b) – w (c) w (d) – w (c) straight line whose slope is 2. Rotational Theorem, Square Root 5 of a Complex Number, Cube Roots (d) circle whose diameter is. 2 TOPIC n of Unity, Geometry of Complex Numbers, De-moiver’s Theorem, Powers of Complex Numbers 47. If z = 3 + i ( i = -1 ) , then (1 + iz + z5 + iz8)9 is equal 2 2 41. Let z = x + iy be a non- ero complex number such that to: [April 08, 2019 (II)] (a) 0 (b) 1 z2 = i |z|2, where i = -1 , then z lies on the: (c) (– 1 + 2i)9 (d) – 1 [Sep. 06, 2020 (II)] (a) line, y = –x (b) imaginary axis 3 x + iy (c) line, y = x (d) real axis 48. æ è 1 ö Let ç -2 - i ÷ = 3 ø 27 ( ) i = -1 , where x and y are real 42. If a and b are real numbers such that (2 + a ) = a + ba , 4 numbers then y – x equals : [Jan. 11, 2019 (I)] (a) 91 (b) – 85 (c) 85 (d) – 91 -1 + i 3 where a = , then a + b is equal to : 5 5 2 æ 3 iö æ 3 iö [Sep. 04, 2020 (II)] 49. Let z = çç + ÷÷ + çç - ÷÷. If R(z) and I(z) (a) 9 (b) 24 (c) 33 (d) 57 è 2 2ø è 2 2ø respectively denote the real and imaginary parts of z, 3 æ 2p 2p ö then: [Jan. 10, 2019 (II)] 1 + sin + i cos ç 9 9 ÷ is : (a) I(z) = 0 (b) R(z) > 0 and I(z) > 0 43. The value of ç 2p 2p ÷ (c) R(z) < 0 and I(z) > 0 (d) R(z) = – (c) ç 1 + sin - i cos ÷ è 9 9 ø n æ1+ i 3 ö [Sep. 02, 2020 (I)] 50. The least positive integer n for which çç ÷÷ = 1, is è1 – i 3 ø 1 1 (a) (1 - i 3) (b) ( 3 - i) [Online April 16, 2018] 2 2 (a) 2 (b) 6 (c) 5 (d) 3 1 1 51. The point represented by 2 + i in the Argand plane moves (c) - ( 3 - i ) (d) - (1 - i 3) 2 2 1 unit eastwards, then 2 units northwards and finally from 44. The imaginary part of (3 + 2 -54)1/ 2 - (3 - 2 -54)1/ 2 there 2 2 units in the south–westwards direction. Then its new position in the Argand plane is at the point can be : [Sep. 02, 2020 (II)] represented by : [Online April 9, 2016] (a) - 6 (b) -2 6 (c) 6 (d) 6 (a) 1 + i (b) 2 + 2i (c) –2 – 2i (d) –1 – i 100 100 52. A complex number is said to be unimodular if | | = 1. -1 + i 3. If a = (1 + a) å a and b = å a , 2k 3k 45. Let a = 2 k =0 k =0 1 -2 2 Suppose 1 and 2 are complex numbers such that 2- 1 then a and b are the roots of the quadratic equation: 2 [Jan. 8, 2020 (II)] is unimodular and 2 is not unimodular. Then the point 1 (a) x2 + 101x + 100 = 0 (b) x2 – 102 x + 101 = 0 lies on a: (c) x2 – 101x + 100 = 0 (d) x2 + 102x +101 = 0 Downloaded from @Freebooksforjeeneet www.jeebooks.in Complex Numbers and Quadratic Equations M-29 (a) circle of radius 2. Solutions of Quadratic Equations, (b) circle of radius 2. Sum and Product of Roots, Nature (c) straight line parallel to x-axis TOPIC Đ of Roots, Relation Between Roots (d) straight line parallel to y-axis. and Co-efficients, Formation of an 2 Equation with Given Roots. 53. If z ¹ 1 and z is real, then the point represented by the z -1 61. If a and b be two roots of the equation x2 – 64x + 256 = 0. complex number z lies : (a) either on the real axis or on a circle passing through 1 1 the origin. æ a 3 ö 8