System of Linear Equations PDF
Document Details
Uploaded by SpiritedCurl7558
كلية الهندسة
Tags
Summary
This document provides handwritten notes on solving systems of linear equations. It covers various methods of solving such as Gaussian elimination, Gauss-Jordan elimination, and how to determine different types of solutions. The notes explain concepts like homogeneous and inhomogeneous systems, and detailed calculations are shown.
Full Transcript
## System of Linear Equations **نظام من المعادلات الخطية** * 2x + 3y - z = 7 * -x + y - 2z = 3 * 2x - z = 9 **Ax = B** $A = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 7 \\ 3 \\ 9 \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$...
## System of Linear Equations **نظام من المعادلات الخطية** * 2x + 3y - z = 7 * -x + y - 2z = 3 * 2x - z = 9 **Ax = B** $A = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 1 & -2 \\ 2 & 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 7 \\ 3 \\ 9 \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ **كل نظام المعادلات** * Augmented Matrix [A|B] **Row Echelon Form** * Gaussian Elimination Method * طريقة جاوس للحذف **Reduced Row Echelon Form** * Gauss-Jordan * طريقة جاوس جودون **Homogeneous** **متجانس** * Ax = 0 * 2x + 3y - z = 0 * -x + y - 2z = 0 * 2x - z = 0 **Inhomogeneous** **غير متجانس** * Ax = B * 2x + 3y - z = 7 * -x + y - 2z = 3 * 2x - z = 9 --- **In Homogeneous** **غير المتجانس** - Unique Solution - حل وحيد - (One Solution) - Consistent - متوافق - Infinitely Many Solutions - عدد لانهائي من الحلول - Solutions - Consistent - متوافق - No Solution - لا يوجد حل - Inconsistent --- **Homogeneous** **المتجانس** - Trivial Solution - الحل التافه (الصغري) - Consistent - متوافق - Infinitely Many Solutions - عدد لانهائي من الحلول - Consistent - متوافق --- **Rank of a matrix** **رتبه بصعوفة** * It's the number of non-zero rows after putting the matrix in row echelon form. * هي عدد الصفوف غير جعفريه بعد وضع المصفوفة في الصورة المختزلة **Dif:** * R(A) = R(A|B) = number of variables => One Solution * عدد المجاهيل => حل واحد * R(A) < R(A|B) => No Solution * لا يوجد حل * R(A) = R(A|B) => Infinitely Many Solutions * يوجد عد ذل اشهائي من حلول --- **Ex: Solve the system of Linear Equation By Using Gauss and Gauss-Jordan Elimination Method** 2x + 4y = 3 x - 3y + 5z = 1 3x - y - z = 4 [A|B] = $\begin{bmatrix} 2 & 4 & & 3 \\ 1 & -3 & 5 & 1 \\ 3 & -1 & -1 & 4 \end{bmatrix}$ $R_1 \leftrightarrow R_2$ $\begin{bmatrix} 1 & -3 & 5 & 1 \\ 2 & 4 & & 3 \\ 3 & -1 & -1 & 4 \end{bmatrix}$ -3R₁ + R₃ $\begin{bmatrix} 1 & -3 & 5 & 1 \\ 2 & 4 & & 3 \\ 0 & 8 & -16 & 1 \end{bmatrix}$ -2R₁ + R₂ $\begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 10 & -10 & 1 \\ 0 & 8 & -16 & 1 \end{bmatrix}$ -8R₂ + R₃ $\begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 10 & -10 & 1 \\ 0 & 0 & -8 & -7 \end{bmatrix}$ -3/2R₃ + R₂ $\begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 10 & 0 & \frac{11}{2} \\ 0 & 0 & -8 & -7 \end{bmatrix}$ -5/8R₃ + R₁ $\begin{bmatrix} 1 & -3 & 0 & \frac{1}{8} \\ 0 & 10 & 0 & \frac{11}{2} \\ 0 & 0 & -8 & -7 \end{bmatrix}$ 1/10R₂ $\begin{bmatrix} 1 & -3 & 0 & \frac{1}{8} \\ 0 & 1 & 0 & \frac{11}{20} \\ 0 & 0 & -8 & -7 \end{bmatrix}$ 3R₂ + R₁ $\begin{bmatrix} 1 & 0 & 0 & \frac{11}{16} \\ 0 & 1 & 0 & \frac{11}{20} \\ 0 & 0 & -8 & -7 \end{bmatrix}$ -1/8R₃ $\begin{bmatrix} 1 & 0 & 0 & \frac{11}{16} \\ 0 & 1 & 0 & \frac{11}{20} \\ 0 & 0 & 1 & \frac{7}{8} \end{bmatrix}$ By Using Gauss * z = 7/8 * y + 2z = 11/20 => y = 11/20 -2(7/8) = 5/8 * x - 3y + 5z = 1 => x = 1 + 3(5/8) - 5(7/8) = 11/16 (x, y, z) = (11/16, 5/8, 7/8) --- **Using Gauss-Jordan** $\begin{bmatrix} -3 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ * -2R₃ + R₂ $\begin{bmatrix} -3 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ * -5R₃ + R₁ $\begin{bmatrix} -3 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ * 3R₃ + R₁ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ It can be checked by substituting the values of x, y, and z in one of the equations. --- **Solve** x + 2y + 3z = 1 -3x - 2y - z = 2 4x + 4y + 4z = 3 [A|B] = $\begin{bmatrix} 1 & 2 & 3 & 1 \\ -3 & - 2 & -1 & 2 \\ 4 & 4 & 4 & 3 \end{bmatrix}$ * 3R₁ + R₂ $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 4 & 8 & 5 \\ 4 & 4 & 4 & 3 \end{bmatrix}$ * -4R₁ + R₃ $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 4 & 8 & 5 \\ 0 & -4 & -8 & -1 \\ \end{bmatrix}$ * R₂ + R₃ $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 4 & 8 & 5 \\ 0 & 0 & 0 & 4 \\ \end{bmatrix}$ 0 = 4 , Impossible The system is Inconsistent (has no solution). --- **Solve** * x - 2x₂ + x₃ + x₄ = 0 * -x₁ + 2x₂ + x₄ = 0 * 2x₁ - 4x₂ + x₃ + x₄ = 0 [A|B] = $\begin{bmatrix} 1 & - 2 & 1 & 1 & 0 \\ -1 & 2 & & 1 & 0 \\ 2 & -4 & 1 & 1 & 0 \end{bmatrix}$ * R₁ + R₂ $\begin{bmatrix} 1 & - 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 2 & -4 & 1 & 1 & 0 \end{bmatrix}$ * -2R₁ + R₃ $\begin{bmatrix} 1 & - 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & -1 & -1 & 0 \end{bmatrix}$ * R₂ + R₃ $\begin{bmatrix} 1 & - 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ x₁ - 2x₂ + x₃ + x₄ = 0 Basic x₃ + 2x₄ = 0 Free x₄ = 0 * x₃ + 2x₄ = 0 => x₃ = - 2x₄ * x₁ - 2x₂ - x₄ = 0 => x₁ = 2x₂ + x₄ * x₄ = 0 The set of all solutions are (x₁, x₂, x₃, x₄) = (2s + t, s, -2t+t) let x₂ = s, x₄ = t, s, t ∈ ℝ (x₁, x₂, x₃, x₄) = (2s + t, s, -2t + t) Let s = 0, t = 1, (x₁, x₂, x₃, x₄) = (1, 0, -2, 1) --- ## Find the Values of λ where in makes the system of Equations has * x + y - z = 2 * x - y + λz = 2 * -x - y + λ²z = 4 1. **Unique Solution and Find its Solution** 2. **Has Infinitely Many Solutions** 3. **Inconsistent (No Solution)** [A|B] = $\begin{bmatrix} 1 & 1 & -1 & 2 \\ 1 & -1 & \lambda & 2 \\ -1 & -1 & \lambda^2 & 4 \end{bmatrix}$ * R₁ + R₂ $\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & \lambda + 1 & 0 \\ -1 & -1 & \lambda^2 & 4 \end{bmatrix}$ * R₁+ R₃ $\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & \lambda + 1 & 0 \\ 0 & 0 & \lambda^2 - 1 & 6 \end{bmatrix}$ * (-1/2)R₂ $\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -\frac{\lambda + 1}{2} & 0 \\ 0 & 0 & \lambda^2 - 1 & 6 \end{bmatrix}$ * -R₂ + R₁ $\begin{bmatrix} 1 & 0 & -\frac{\lambda - 1}{2} & 2 \\ 0 & 1 & -\frac{\lambda + 1}{2} & 0 \\ 0 & 0 & \lambda^2 - 1 & 6 \end{bmatrix}$ 1. **If λ ≠ 1 ≠ 0 => λ + 1 ≠ 0 => λ ∈ R - {1, - 1}** The system has a Unique Solution. (One Solution) Put λ = 2 $\begin{bmatrix} 1 & 0 & -\frac{1}{2} & 2 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 3 & 6 \end{bmatrix}$ * R₃ /3 $\begin{bmatrix} 1 & 0 & -\frac{1}{2} & 2 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ * (1/2)R₃+R₁ $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ * (3/2)R₃ + R₂ $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ => z = 2 => y - 3/2 * z = 0 => y - 3/2 * 2 = 0 => y = 3 => x + y - z = 2 => x + 3 - 2 = 2 => x = 1 (x, y, z) = (1, 3, 2) 2. **Impossible (Infinitely many solutions)** 3. **The system has Inconsistent (No solution) if λ = 1**