Se va a impermeabilizar el techo del aula de una escuela, que mide 8 metros de largo por 5 metros de ancho. ¿Cuántos metros cuadrados se van a impermeabilizar? También se va a pint... Se va a impermeabilizar el techo del aula de una escuela, que mide 8 metros de largo por 5 metros de ancho. ¿Cuántos metros cuadrados se van a impermeabilizar? También se va a pintar una barda de 11 metros de largo y 1.5 de alto con el siguiente diseño. ¿Cuántos metros cuadrados mide la barda?

Question image

Understand the Problem

La pregunta se divide en dos partes. Primero, pide calcular el área del techo de un aula escolar que tiene una longitud de 8 metros y un ancho de 5 metros. Esto implica usar la fórmula del área de un rectángulo. Segundo, pide calcular el área de una barda que mide 11 metros de largo y 1.5 de alto. Esto también implica usar la fórmula del área de un rectángulo.

Answer

The area of the roof is $40 \ m^2$ and the area of the barda is $16.5 \ m^2$.
Answer for screen readers

The area to be waterproofed (roof) is $40 \ m^2$. The area of the barda (wall) is $16.5 \ m^2$.

Steps to Solve

  1. Calculate the area of the roof

The area of a rectangle is calculated by multiplying its length by its width. Given that the roof is 8 meters long and 5 meters wide, the area is:

$$ Area_{roof} = length \times width = 8 \ m \times 5 \ m $$

  1. Calculate the area of the barda

Similarly, the area of the barda (wall) is calculated by multiplying its length by its height. Given that the barda is 11 meters long and 1.5 meters high, the area is:

$$ Area_{barda} = length \times height = 11 \ m \times 1.5 \ m $$

  1. Calculate the area of the roof (classroom)

$$ Area_{roof} = 8 \ m \times 5 \ m = 40 \ m^2 $$

  1. Calculate the area of the barda (wall) $$ Area_{barda} = 11 \ m \times 1.5 \ m = 16.5 \ m^2 $$

The area to be waterproofed (roof) is $40 \ m^2$. The area of the barda (wall) is $16.5 \ m^2$.

More Information

The area is a measure of a surface. It's always expressed in square units, in this case, square meters ($m^2$).

Tips

  • Forgetting to include the units ($m^2$) in the final answer.
  • Incorrectly applying the area formula.
  • Mistaking length for width or height.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser