Para calcular la distancia de A al embarcadero C, tomamos las medidas que indica la figura. Halla AC.

Question image

Understand the Problem

El problema nos pide calcular la distancia desde el punto A hasta el embarcadero C (la longitud del segmento AC), utilizando la información proporcionada en el diagrama. Esto implica aplicar la ley de los senos o la ley de los cosenos, ya que tenemos un triángulo no rectángulo con algunos de sus ángulos y un lado conocidos.

Answer

$AC \approx 18.16$ cm
Answer for screen readers

$AC \approx 18.16$ cm

Steps to Solve

  1. Find the angle at C

Since the sum of the angles in a triangle is $180^\circ$, we can find the angle at $C$ by subtracting the angles at $A$ ($52^\circ$) and $B$ ($46^\circ$) from $180^\circ$: $$ \angle C = 180^\circ - 52^\circ - 46^\circ = 82^\circ $$

  1. Apply the Law of Sines

We can use the Law of Sines to find the length of $AC$. The Law of Sines states that for any triangle, the ratio of the length of a side to the sine of its opposite angle is constant. In this case, we have: $$ \frac{AC}{\sin(\angle B)} = \frac{AB}{\sin(\angle C)} $$ We are given $AB = 25$ cm, $\angle B = 46^\circ$, and we calculated $\angle C = 82^\circ$. Plugging these values into the equation, we get: $$ \frac{AC}{\sin(46^\circ)} = \frac{25}{\sin(82^\circ)} $$

  1. Solve for $AC$

To find $AC$, we multiply both sides of the equation by $\sin(46^\circ)$: $$ AC = \frac{25 \cdot \sin(46^\circ)}{\sin(82^\circ)} $$ Now, we can use a calculator to find the values of the sines and compute $AC$: $$ AC \approx \frac{25 \cdot 0.7193}{0.9903} \approx \frac{17.9825}{0.9903} \approx 18.158 $$ Therefore, the length of $AC$ is approximately 18.16 cm.

$AC \approx 18.16$ cm

More Information

The Law of Sines is a helpful tool used to solve triangles when you know two angles and one side, or two sides and an angle opposite one of them.

Tips

One common mistake is to use the Law of Cosines incorrectly, or when the Law of Sines would be significantly easier. Another common mistake is to have your calculator in the wrong mode (degrees vs. radians), which would give you the wrong sine values.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser