Elige el método más adecuado para resolver los siguientes sistemas de ecuaciones: a. x - 4y + 5 = 2y + 3x - 3 6x = 1 + 5y b. 2.8x - 1.7y = 8.9 3.2(x - 3y) = -12.8 c. 2x... Elige el método más adecuado para resolver los siguientes sistemas de ecuaciones: a. x - 4y + 5 = 2y + 3x - 3 6x = 1 + 5y b. 2.8x - 1.7y = 8.9 3.2(x - 3y) = -12.8 c. 2x + y/4 = 5 -3(x - 1) + 13 = 2(y + 1) d. 2(5x - 3) + 2y = 0 -3(x - y) = -(x + 8) e. 2x - y + 3(x - y) = -4 5(x - 3y) + 2y - 3(3x - 2y) = -7

Question image

Understand the Problem

La pregunta pide identificar el método más adecuado para resolver varios sistemas de ecuaciones lineales. Esto implica analizar cada sistema para determinar si es más conveniente usar sustitución, eliminación, igualación, u otro método, basado en la estructura específica de las ecuaciones.

Answer

a. Eliminación o sustitución. b. Eliminación. c. Sustitución o eliminación. d. Sustitución o eliminación. e. Sustitución o eliminación.
Answer for screen readers

a. Eliminación o sustitución. b. Eliminación. c. Sustitución o eliminación. d. Sustitución o eliminación. e. Sustitución o eliminación.

Steps to Solve

  1. Simplify the equations First, simplify each system of equations to a standard form (e.g., $ax + by = c$). This will make it easier to determine the best method for solving each system.

  2. Analyze system a First equation: $x - 4y + 5 = 2y + 3x - 3 \implies -2x - 6y = -8 \implies x + 3y = 4$. Second equation: $6x = 1 + 5y \implies 6x - 5y = 1$. The elimination or substitution methods would be suitable since the equations can be easily rearranged.

  3. Analyze system b First equation: $2.8x - 1.7y = 8.9$. Second equation: $3.2(x - 3y) = -12.8 \implies 3.2x - 9.6y = -12.8$. The elimination method looks good here since we can easily eliminate $x$ multiplying the first equation by $-3.2$ and the second equation by $2.8$

  4. Analyze system c First equation: $2x + \frac{y}{4} = 5$. Second equation: $-3(x - 1) + 13 = 2(y + 1) \implies -3x + 3 + 13 = 2y + 2 \implies -3x - 2y = -14 \implies 3x + 2y = 14$. The substitution or elimination methods are appropriate.

  5. Analyze system d First equation: $2(5x - 3) + 2y = 0 \implies 10x - 6 + 2y = 0 \implies 10x + 2y = 6 \implies 5x + y = 3$. Second equation: $-3(x - y) = -(x + 8) \implies -3x + 3y = -x - 8 \implies -2x + 3y = -8$. The substitution or elimination methods are suitable.

  6. Analyze system e First equation: $2x - y + 3(x - y) = -4 \implies 2x - y + 3x - 3y = -4 \implies 5x - 4y = -4$. Second equation: $5(x - 3y) + 2y - 3(3x - 2y) = -7 \implies 5x - 15y + 2y - 9x + 6y = -7 \implies -4x - 7y = -7$. The substitution or elimination methods are appropriate.

a. Eliminación o sustitución. b. Eliminación. c. Sustitución o eliminación. d. Sustitución o eliminación. e. Sustitución o eliminación.

More Information

The prompt asked for the most suitable method to solve each system, not the full solution.

Tips

  • Not simplifying the equations first, which can lead to choosing a less efficient method.
  • Choosing a method without considering the coefficients of the variables, which can make the calculations more complex.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser