Determine el precio y la cantidad de equilibrio para las ecuaciones de oferta y demanda siguientes: $q^2 + 5q - p + 1 = 0$ $2q^2 + p - 9 = 0$ Mostrar sus resultados en un gráfic... Determine el precio y la cantidad de equilibrio para las ecuaciones de oferta y demanda siguientes: $q^2 + 5q - p + 1 = 0$ $2q^2 + p - 9 = 0$ Mostrar sus resultados en un gráfico a escala.

Understand the Problem
La pregunta pide determinar el precio y la cantidad de equilibrio para las ecuaciones de oferta y demanda dadas, y luego mostrar los resultados en un gráfico a escala. Esto implica resolver el sistema de ecuaciones y luego representar gráficamente la solución.
Answer
$q = 1$, $p = 7$
Answer for screen readers
El precio de equilibrio es $p = 7$ y la cantidad de equilibrio es $q = 1$.
Steps to Solve
- Eliminar $p$ de las ecuaciones
Sumamos las dos ecuaciones para eliminar la variable $p$.
$(q^2 + 5q - p + 1) + (2q^2 + p - 9) = 0 + 0$ $3q^2 + 5q - 8 = 0$
- Resolver la ecuación cuadrática para $q$
Usamos la fórmula cuadrática para resolver $q$:
$q = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
donde $a = 3$, $b = 5$, y $c = -8$.
$q = \frac{-5 \pm \sqrt{5^2 - 4(3)(-8)}}{2(3)}$ $q = \frac{-5 \pm \sqrt{25 + 96}}{6}$ $q = \frac{-5 \pm \sqrt{121}}{6}$ $q = \frac{-5 \pm 11}{6}$
Esto nos da dos posibles valores para $q$: $q_1 = \frac{-5 + 11}{6} = \frac{6}{6} = 1$ $q_2 = \frac{-5 - 11}{6} = \frac{-16}{6} = -\frac{8}{3}$
Como la cantidad no puede ser negativa, tomamos $q = 1$.
- Sustituir $q$ en una de las ecuaciones originales para encontrar $p$
Usamos la segunda ecuación $2q^2 + p - 9 = 0$ y sustituimos $q = 1$:
$2(1)^2 + p - 9 = 0$ $2 + p - 9 = 0$ $p - 7 = 0$ $p = 7$
Por lo tanto, el precio de equilibrio es $p = 7$ y la cantidad de equilibrio es $q = 1$.
- Graficar las ecuaciones (opcional)
Aunque la pregunta pide mostrar los resultados en un gráfico, el proceso de graficación en sí no es esencial para encontrar el precio y la cantidad de equilibrio. Si fuera necesario graficar, se reordenarían ambas ecuaciones para expresar $p$ en términos de $q$.
El precio de equilibrio es $p = 7$ y la cantidad de equilibrio es $q = 1$.
More Information
El punto de equilibrio representa el punto donde la cantidad que los productores están dispuestos a ofrecer es igual a la cantidad que los consumidores están dispuestos a comprar.
Tips
- No considerar las raíces negativas en la fórmula cuadrática, pero en problemas de economía la cantidad usualmente no es negativa, así que se descarta.
- Errores algebraicos al simplificar o sustituir los valores en las ecuaciones.
- Confusión al graficar las curvas de oferta y demanda.
AI-generated content may contain errors. Please verify critical information