¿Cuál triángulo rectángulo cumple con que la razón tan θ = 3/2?

Question image

Understand the Problem

La pregunta pide identificar cuál triángulo rectángulo cumple con la condición de que la tangente del ángulo θ sea igual a 3/2. Esto implica verificar las relaciones entre los lados del triángulo (cateto opuesto y cateto adyacente) con respecto al ángulo θ.

Answer

The triangle in the image satisfies the condition $\tan \theta = \frac{3}{2}$.
Answer for screen readers

The triangle shown satisfies the condition $\tan \theta = \frac{3}{2}$.

Steps to Solve

  1. Recall the definition of tangent

The tangent of an angle $\theta$ in a right triangle is defined as the ratio of the length of the side opposite to the angle to the length of the side adjacent to the angle. $$ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} $$

  1. Analyze the given triangle

In the given triangle, the side opposite to angle $\theta$ has a length of 3, and the side adjacent to angle $\theta$ has a length of 2.

  1. Calculate the tangent of $\theta$ for the given triangle $$ \tan \theta = \frac{3}{2} $$

The triangle shown satisfies the condition $\tan \theta = \frac{3}{2}$.

More Information

The tangent function relates angles to the ratio of sides in right triangles, and it's a fundamental concept in trigonometry.

Tips

Null

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser