¿Cuál es el resultado de efectuar (5x + 7)(2x - 3)?

Question image

Understand the Problem

La pregunta es una expresión algebraica y nos pide simplificarla. Esto implica expandir el producto de los dos binomios y luego combinar los términos semejantes para obtener la forma simplificada.

Answer

$10x^2 - x - 21$
Answer for screen readers

$10x^2 - x - 21$

Steps to Solve

  1. Expanding the product

We will use the distributive property (also known as FOIL) to expand the product of the two binomials $(5x + 7)(2x - 3)$.

$(5x + 7)(2x - 3) = 5x(2x) + 5x(-3) + 7(2x) + 7(-3)$

  1. Simplifying each term

Now, perform each multiplication:

$5x(2x) = 10x^2$ $5x(-3) = -15x$ $7(2x) = 14x$ $7(-3) = -21$

  1. Combining the terms

Substitute these results back into the expression:

$10x^2 - 15x + 14x - 21$

  1. Combining like terms

Combine the $x$ terms:

$-15x + 14x = -x$

  1. Final simplified expression

So the simplified expression is:

$10x^2 - x - 21$

$10x^2 - x - 21$

More Information

The result of expanding and simplifying $(5x + 7)(2x - 3)$ is $10x^2 - x - 21$.

Tips

A common mistake is distributing the terms incorrectly, especially with the negative sign in the second binomial. Another mistake could be incorrectly multiplying the coefficients or the variables.

null

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser