Air is compressed in a piston-cylinder assembly from p1 = 20 lbf/in², T1 = 500°R, V1 = 9 ft³ to a final volume of V2 = 1 ft³ in a process described by \(pv^{1.20} = constant\). Ass... Air is compressed in a piston-cylinder assembly from p1 = 20 lbf/in², T1 = 500°R, V1 = 9 ft³ to a final volume of V2 = 1 ft³ in a process described by \(pv^{1.20} = constant\). Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T1, determine the work and the heat transfer, in Btu.

Question image

Understand the Problem

The question describes a thermodynamic process where air is compressed in a piston-cylinder assembly. You are given the initial pressure (p1), initial temperature (T1), initial volume (V1), and final volume (V2). The process follows the equation (pv^{1.20} = constant). The question asks to determine the work done and the heat transfer during this process, in Btu, assuming ideal gas behavior and using constant specific heats evaluated at T1.

Answer

$W = -86.55 \text{ Btu}$ $Q = -40.69 \text{ Btu}$
Answer for screen readers

Work done: $W = -86.55 \text{ Btu}$ Heat transfer: $Q = -40.69 \text{ Btu}$

Steps to Solve

  1. Calculate the final pressure $p_2$

Using the given relation $pv^{1.20} = constant$, we have: $p_1V_1^{1.20} = p_2V_2^{1.20}$ $p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{1.20}$ $p_2 = 20 \left(\frac{9}{1}\right)^{1.20} = 20 \times 13.676 \approx 273.52 \text{ lbf/in}^2$

  1. Calculate the work done, W

The work done for a polytropic process is given by: $W = \int_{V_1}^{V_2} pdV = \frac{p_2V_2 - p_1V_1}{1-n}$, where $n = 1.20$. $W = \frac{p_2V_2 - p_1V_1}{1-1.20} = \frac{(273.52 \text{ lbf/in}^2 \times 1 \text{ ft}^3) - (20 \text{ lbf/in}^2 \times 9 \text{ ft}^3)}{1-1.20}$

We need to convert $p_2V_2$ and $p_1V_1$ from $\text{lbf} \cdot \text{ft}^3/\text{in}^2$ to Btu. Recall that $1 \text{ Btu} = 778 \text{ lbf} \cdot \text{ft}$. Also, $1 \text{ ft}^2 = 144 \text{ in}^2$, so $1 \text{ ft}^3 = 144 \text{ in}^2 \cdot \text{ft}$.

$p_2V_2 = 273.52 \frac{\text{lbf}}{\text{in}^2} \times 1 \text{ ft}^3 = 273.52 \frac{\text{lbf}}{\text{in}^2} \times 144 \frac{\text{in}^2}{\text{ft}^2} \cdot \text{ft}^3 = 39386.88 \text{ lbf} \cdot \text{ft}$ $p_1V_1 = 20 \frac{\text{lbf}}{\text{in}^2} \times 9 \text{ ft}^3 = 180 \frac{\text{lbf}}{\text{in}^2} \times 144 \frac{\text{in}^2}{\text{ft}^2} \cdot \text{ft}^3 = 25920 \text{ lbf} \cdot \text{ft}$

$W = \frac{39386.88 - 25920}{1-1.20} = \frac{13466.88}{-0.20} = -67334.4 \text{ lbf} \cdot \text{ft}$ Converting to Btu: $W = \frac{-67334.4 \text{ lbf} \cdot \text{ft}}{778 \frac{\text{lbf} \cdot \text{ft}}{\text{Btu}}} = -86.55 \text{ Btu}$

  1. Calculate the final temperature $T_2$

Using the ideal gas law and the polytropic process relation: $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{n-1}$ $T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{n-1} = 500 \left(\frac{9}{1}\right)^{1.20-1} = 500 \times 9^{0.20} = 500 \times 1.5518 \approx 775.9 \text{ °R}$

  1. Calculate the change in internal energy $\Delta U$

$\Delta U = m c_v (T_2 - T_1)$

We need to find the mass $m$. Using the ideal gas law $p_1V_1 = mRT_1$ $R = 0.3704 \frac{\text{psia} \cdot \text{ft}^3}{\text{lbm} \cdot \text{°R}}$

$p_1 = 20 \frac{\text{lbf}}{\text{in}^2} = 20 \text{ psia}$ $m = \frac{p_1V_1}{RT_1} = \frac{20 \text{ psia} \times 9 \text{ ft}^3}{0.3704 \frac{\text{psia} \cdot \text{ft}^3}{\text{lbm} \cdot \text{°R}} \times 500 \text{ °R}} = \frac{180}{185.2} \approx 0.9719 \text{ lbm}$

$c_v$ at $T_1 = 500 \text{ °R}$ is $0.171 \frac{\text{Btu}}{\text{lbm} \cdot \text{°R}}$

$\Delta U = m c_v (T_2 - T_1) = 0.9719 \text{ lbm} \times 0.171 \frac{\text{Btu}}{\text{lbm} \cdot \text{°R}} \times (775.9 - 500) \text{ °R} = 0.9719 \times 0.171 \times 275.9 \approx 45.86 \text{ Btu}$

  1. Calculate the heat transfer, Q

Using the first law of thermodynamics: $\Delta U = Q - W$, so $Q = \Delta U + W$ $Q = 45.86 \text{ Btu} + (-86.55 \text{ Btu}) = -40.69 \text{ Btu}$

Work done: $W = -86.55 \text{ Btu}$ Heat transfer: $Q = -40.69 \text{ Btu}$

More Information

The negative sign for work indicates that work is done on the system (compression). The negative sign for heat transfer indicates that heat is leaving the system.

Tips

A common mistake is not converting the pressure and volume units to consistent units (e.g., converting lbf/in² and ft³ to lbf⋅ft for work calculation). Also, not using the correct gas constant R and specific heat values ($c_v$) can lead to errors. Forgetting the sign convention for work (positive for work done by the system, negative for work done on the system) is also a frequent mistake.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!