Podcast
Questions and Answers
Explain how the use of imagery in Tennyson's "The Kraken" contributes to the poem's overall sense of mystery and mythical tone.
Explain how the use of imagery in Tennyson's "The Kraken" contributes to the poem's overall sense of mystery and mythical tone.
Tennyson uses vivid and descriptive imagery that appeals to the senses, such as 'below the thunders' and 'shadows of the sea,' to evoke a sense of the mysterious underwater world where the Kraken sleeps, enhancing the poem's mythical tone.
Analyze how alliteration is used in "The Kraken" and provide an example from the poem, explaining its effect on the reader.
Analyze how alliteration is used in "The Kraken" and provide an example from the poem, explaining its effect on the reader.
Alliteration, such as the repetition of consonant sounds in 'far, far' (line 2) and 'battening upon huge sea-worms' (line 6-7), adds rhythm and emphasis, creating a sense of the ancient and alien underwater landscape while also subtly binding the elements of the poem together through sound.
Discuss the significance of assonance in the first quatrain of "The Kraken" and provide an example, detailing its impact on the poem's melodic effect.
Discuss the significance of assonance in the first quatrain of "The Kraken" and provide an example, detailing its impact on the poem's melodic effect.
The assonance, particularly the repetition of 'ea' and 'ee' vowel sounds, helps create a melodic and harmonious effect in the first quatrain, enhancing the musicality of the poem and drawing the reader into its underwater world, for instance in 'leaden' and 'sea'.
How does Tennyson use personification in "The Kraken," and what is the impact of this literary device on the poem's depiction of the natural world?
How does Tennyson use personification in "The Kraken," and what is the impact of this literary device on the poem's depiction of the natural world?
Explain how hyperbole contributes to the portrayal of the Kraken’s immense scale and the atmosphere of "The Kraken."
Explain how hyperbole contributes to the portrayal of the Kraken’s immense scale and the atmosphere of "The Kraken."
How does the rhyme scheme of Tennyson's "The Kraken" contribute to the poem's overall structure and effect, and in what ways does it deviate from traditional sonnet structures?
How does the rhyme scheme of Tennyson's "The Kraken" contribute to the poem's overall structure and effect, and in what ways does it deviate from traditional sonnet structures?
Analyze how the meter of "The Kraken" influences the poem's rhythm and pace, and provide a brief example, and how it deviates from the traditional iambic pentameter.
Analyze how the meter of "The Kraken" influences the poem's rhythm and pace, and provide a brief example, and how it deviates from the traditional iambic pentameter.
Describe the effect of enjambment in "The Kraken" and give an example from the poem, explaining how it influences the flow and rhythm of the lines.
Describe the effect of enjambment in "The Kraken" and give an example from the poem, explaining how it influences the flow and rhythm of the lines.
Assess Tennyson's strategic incorporation of irregular syllable counts within the lines of "The Kraken," detailing how it impacts the establishment, or disestablishment, of a consistent rhythm.
Assess Tennyson's strategic incorporation of irregular syllable counts within the lines of "The Kraken," detailing how it impacts the establishment, or disestablishment, of a consistent rhythm.
How does "The Kraken" resemble a sonnet and diverge from it, and what effects do these choices have on the poem's overall structure, tone, and impact?
How does "The Kraken" resemble a sonnet and diverge from it, and what effects do these choices have on the poem's overall structure, tone, and impact?
Flashcards
Figures of speech and literary devices in "The Kraken"
Figures of speech and literary devices in "The Kraken"
Use of speech and literary devices in the poem to contribute to its vivid imagery, sense of mystery, and mythical tone.
Imagery
Imagery
Descriptive/figurative language that appeals to the senses; Tennyson draws a vivid picture of the sleeping yet mysterious Kraken in its underwater word.
Alliteration
Alliteration
The repetition of consonant sounds (or letters) at the beginning of words which adds rythm and emphasis.
Assonance Definition
Assonance Definition
Signup and view all the flashcards
Onomatopoeia
Onomatopoeia
Signup and view all the flashcards
Hyperbole
Hyperbole
Signup and view all the flashcards
Enjambment
Enjambment
Signup and view all the flashcards
"The Kraken" lines
"The Kraken" lines
Signup and view all the flashcards
Meter definition
Meter definition
Signup and view all the flashcards
Rhyme Scheme
Rhyme Scheme
Signup and view all the flashcards
Study Notes
6. 3: Volumes by Cylindrical Shells
- Cylindrical shells are used to calculate volume when rotating a region around an axis.
- The disk method can be problematic, such as when solving for x in terms of y
Cylindrical Shells Explained
- V = (area of outer cylinder) - (area of inner cylinder)
- Area of outer cylinder = $\pi r_2^2h$
- Area of inner cylinder = $\pi r_1^2h$
- $V = \pi h(r_2^2 - r_1^2)$
- $V = 2\pi h \left( \frac{r_2 + r_1}{2} \right) (r_2 - r_1)$
Formula Variables
- $\Delta r = r_2 - r_1$
- $r = \frac{r_2 + r_1}{2}$
- $V = 2\pi rh \Delta r$
General formula for volume of cylindrical sells
- $V = \int_a^b 2\pi x f(x) dx$
- It is the region under $y = f(x)$ from a to b rotated about the y-axis
Example 1
- The region under the curve $y = 2x^2 - x^3$ from $0$ to $2$ is rotated about the y-axis. Solution:
- $V = \int_0^2 2\pi x (2x^2 - x^3) dx$
- $2\pi \int_0^2 (2x^3 - x^4) dx$
- $2\pi \left[ \frac{1}{2}x^4 - \frac{1}{5}x^5 \right]_0^2$
- $2\pi \left( \frac{1}{2}(2)^4 - \frac{1}{5}(2)^5 \right)$
- $2\pi \left( 8 - \frac{32}{5} \right)$
- $2\pi \left( \frac{40 - 32}{5} \right)$
- $2\pi \left( \frac{8}{5} \right) = \frac{16\pi}{5}$
Example 2
- The region bounded by $y = x - x^2$ and $y = 0$ is rotated about the line $x = 2$. Solution:
- $V = \int_0^1 2\pi (2 - x)(x - x^2) dx$
- $2\pi \int_0^1 (2x - 2x^2 - x^2 + x^3) dx$
- $2\pi \int_0^1 (2x - 3x^2 + x^3) dx$
- $2\pi \left[ x^2 - x^3 + \frac{1}{4}x^4 \right]_0^1$
- $2\pi \left( 1 - 1 + \frac{1}{4} \right)$
- $2\pi \left( \frac{1}{4} \right) = \frac{\pi}{2}$
Example 3
- The region enclosed by $y = x$ and $y = x^2$ is rotated about the x-axis. Solution:
- $V = \int_0^1 2\pi y (\sqrt{y} - y) dy$
- $2\pi \int_0^1 (y^{3/2} - y^2) dy$
- $2\pi \left[ \frac{2}{5}y^{5/2} - \frac{1}{3}y^3 \right]_0^1$
- $2\pi \left( \frac{2}{5} - \frac{1}{3} \right)$
- $2\pi \left( \frac{6 - 5}{15} \right)$
- $2\pi \left( \frac{1}{15} \right) = \frac{2\pi}{15}$
Algorithmes gloutons
- A simple technique for tackling optimization problems, by picking the current best option for the desired endpoint.
- Series of choices, each seemingly the best at that moment
- These choices hopefully to lead to an overall optimal solution.
Operation
- Define problem, identify the objective
- Choose best local option - most promising without worrying about future consequences
- Step by step, repeat to complete a solution
Advantages
- Simple, easy to understand and implement
- Efficient, able to make direct decisions
Disadvantages
- Non-optimality, does not guarantee the best solution
- Need for proof, greedy approach needs 3rd party verification
Rendu de monnaie
- Return a sum of money with the least ammount of bills and coins as possible
- Algorithm: Sort denominations by value, take as much highest value without passing the sum
- Take the next smallest bill repeat
Problème du sac à dos fractionnaire
- Maximizes the total value of objects carried in a backpack with limited capacity, where fractions of objects can be taken. Algorithm:
- Calculate the value to wheight ratio, sort objects by descending ratio.
- Take as much of the highest ratio as possible, repeating process
- Greedy algorithm is optimal for the fractional knapsack calculation
Usage Considerations
- Optimal local structure - a choice at one state leads to global solution
- Solution is needed quickly
- As a precursor to other complex algorithms
Reglas de la inferencia
- Logical step in reasoning process, moves from premise to conclusion. Guarantees true premise will be met with true conlcusion.
Modus Ponens (MP)
- Forma:
- P → Q
- P
- ∴ Q
- Ejemplo:
- Si está lloviendo, entonces hay nubes en el cielo.
- Está lloviendo.
- ∴ Hay nubes en el cielo.
Modus Tollens (MT)
- Forma:
- P → Q
- ¬ Q
- ∴ ¬ P
- Ejemplo:
- Si está lloviendo, entonces hay nubes en el cielo.
- No hay nubes en el cielo.
- ∴ No está lloviendo.
Silogismo Hipotético (SH)
- Forma:
- P → Q
- Q → R
- ∴ P → R
- Ejemplo:
- Si estudio, entonces obtendré buenas notas.
- Si obtengo buenas notas, entonces entraré a la universidad.
- ∴ Si estudio, entonces entraré a la universidad.
Silogismo Disyuntivo (SD)
- Forma:
- P ∨ Q
- ¬ P
- ∴ Q
- Ejemplo:
- O voy al cine, o me quedo en casa.
- No voy al cine.
- ∴ Me quedo en casa.
Adición (Ad)
- Forma:
- P
- ∴ P ∨ Q
- Ejemplo:
- Estoy leyendo un libro.
- ∴ Estoy leyendo un libro o estoy viendo una pelÃcula.
Simplificación (Simp)
- Forma:
- P ∧ Q
- ∴ P
- Ejemplo:
- Estoy leyendo un libro y escuchando música.
- ∴ Estoy leyendo un libro.
Conjunción (Conj)
- Forma:
- P
- Q
- ∴ P ∧ Q
- Ejemplo:
- Estoy leyendo un libro.
- Estoy escuchando música.
- ∴ Estoy leyendo un libro y escuchando música.
Ley de Morgan (LM)
- Forma:
- ¬ (P ∧ Q) ≡ (¬ P) ∨ (¬ Q)
- ¬ (P ∨ Q) ≡ (¬ P) ∧ (¬ Q)
- Ejemplo:
- No es cierto que estoy leyendo un libro y escuchando música ≡ No estoy leyendo un libro o no estoy escuchando música.No es cierto que estoy leyendo un libro o escuchando música ≡ No estoy leyendo un libro y no estoy escuchando música.
Doble Negación (DN)
- Forma:
- P ≡ ¬ ¬ P
- Ejemplo:
- No es cierto que no estoy leyendo un libro ≡ Estoy leyendo un libro.
Conmutación (Conm)
- Forma:
- (P ∨ Q) ≡ (Q ∨ P)
- (P ∧ Q) ≡ (Q ∧ P)
- Ejemplo:
- Estoy leyendo un libro o escuchando música ≡ Estoy escuchando música o estoy leyendo un libro.
- Estoy leyendo un libro y escuchando música ≡ Estoy escuchando música y estoy leyendo un libro.
Implicación Material (IM)
- Forma:
- P → Q ≡ ¬ P ∨ Q
- Ejemplo:
- Si estoy leyendo un libro, entonces estoy aprendiendo ≡ No estoy leyendo un libro o estoy aprendiendo.This provides fundamental tools for the construction of logical arguments and mathematical theorems.
Physics - Vectors
- Vectors have magnitude, direction, and sense, representing physical quantities.
Vector Components
- Expressed as $\vec{a} = (a_x, a_y)$ where:
- $a_x = a \cos \theta$
- $a_y = a \sin \theta$
- And $\vec{a} = a_x \hat{i} + a_y \hat{j}$
Vector Magnitude
- Calculated as $a = |\vec{a}| = \sqrt{a_x^2 + a_y^2}$
Vector Addition/ Subtraction
- Sum $\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)$
Scalar Product
- Calculated as $\vec{a} \cdot \vec{b} = a b \cos \alpha = a_x b_x + a_y b_y$
Vector Product
- Calculated as $\vec{a} \times \vec{b} = a b \sin \alpha \hat{k}$
Kinematics - Uniform Rectilinear Motion (MRU)
- Formula $v = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$
- Position $x(t) = x_i + v (t - t_i)$
Uniformly Varied Rectilinear Motion (MRUV)
- Formula $a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$
- Velocity $v(t) = v_i + a (t - t_i)$
- Position $x(t) = x_i + v_i (t - t_i) + \frac{1}{2} a (t - t_i)^2$
- Alternate Formula $v_f^2 - v_i^2 = 2 a \Delta x$
Vertical Shot and Free Fall
- Special cases of MRUV where acceleration is due to gravity ($g = 9,8 m/s^2$) and the path is vertical.
Oblique Shot
- Composition of MRU on the x-axis and MRUV on the y-axis.
- $x(t) = x_i + v_{ix} (t - t_i)$
- $v_x(t) = v_{ix}$
- $y(t) = y_i + v_{iy} (t - t_i) + \frac{1}{2} a_y (t - t_i)^2$
- $v_y(t) = v_{iy} + a_y (t - t_i)$
Circular Motion
- $v_{ix} = v_i \cos \theta$
- $v_{iy} = v_i \sin \theta$
- $a_y = -g$
Uniform Circular Motion (MCU)
- Angular Velocity $\omega = \frac{\Delta \theta}{\Delta t}$
- Angular Position $\theta(t) = \theta_i + \omega (t - t_i)$
- Linear Velocity $v = \omega r$
- Centripetal Acceleration $a_c = \frac{v^2}{r} = \omega^2 r$
- Period $T = \frac{2 \pi r}{v} = \frac{2 \pi}{\omega}$
Uniformly Varied Circular Motion (MCUV)
- Angular Acceleration $\alpha = \frac{\Delta \omega}{\Delta t}$
- Angular Velocity $\omega (t) = \omega_i + \alpha (t - t_i)$
- Angular Position $\theta (t) = \theta_i + \omega_i (t - t_i) + \frac{1}{2} \alpha (t - t_i)^2$
Dynamics - Newton's Laws
- First Law: Inertia - objects stay at rest unless acted on by an external force.
- Second Law: $\sum \vec{F} = m \vec{a}$, where force = mass * acceleration
- Third Law: Action-Reaction - every action has an equal and opposite reaction.
Work
- Formula $W = \vec{F} \cdot \Delta \vec{x} = F \Delta x \cos \theta$
Kinetic Energy
- Formula $K = \frac{1}{2} m v^2$
Work-Energy Theorem
- Formula $W_{neto} = \Delta K$
Potential Energy
- Gravitational Potential Energy: $U_g = m g h$
- Elastic Potential Energy: $U_e = \frac{1}{2} k x^2$
Mechanical Energy
- $E = K + U$
Conservative Forces
- Forces where work done is independent of the path (e.g., gravity).
Conservation of Mechanical Energy
- If only conservative forces act, $\Delta E = 0$ and $E_i = E_f$
Power
- Power = $\frac{\Delta W}{\Delta t} = \vec{F} \cdot \vec{v}$
Momentum
- Momentum: $\vec{p} = m \vec{v}$
Impulse
- Impulse: $\vec{I} = \vec{F} \Delta t = \Delta \vec{p}$
Conservation of Momentum
- No external force keeps momentum constant ($\Delta \vec{p} = 0$ and $\vec{p}_i = \vec{p}_f$)
Collisions
- Elastic: Conserves kinetic energy.
- Inelastic: Does not conserve kinetic energy.
- Perfectly Inelastic: Objects stick together.
Statics - Equilibrium Conditions
- Force = $\sum \vec{F} = 0$
- Torque = $\sum \tau = 0$
Chemical Kinetics
- Reaction Rate
- Reaction rate expresses how fast the reactants turn into product
- It is the change in concentration of a reactant or product per unit time with the formula Rate = $-\frac{\Delta[Reactant]}{\Delta t} = \frac{\Delta[Product]}{\Delta t}$
- Example $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ turns to $rate = -\frac{1}{2}\frac{\Delta[H_2]}{\Delta t} = -\frac{\Delta[O_2]}{\Delta t} = \frac{1}{2}\frac{\Delta[H_2O]}{\Delta t}$
Factors Affecting Reaction Rate
- Concentration
- Temperature
- Surface Area
- Catalyst
- $aA + bB \rightarrow Products$ turns to Rate = $k[A]^m[B]^n$
- k is the rate constant
- $[A]$ and $[B]$ are the concentrations of reactants
- m and n are the reaction orders
- Examples
- Zero order
- First order
- Second order
- Rate law follows equation $Rate = k[NO]^2[Cl_2]$
Reaction Mechanisms
- Reaction mechanism is the step by step process of overall change with elementary reaction and its molecularity number.
Activation Energy
- It is the minimum amount of energy required for a reaction to occur with Arrhenius Equation listed below:
- $k = Ae^{-\frac{E_a}{RT}}$
- k is the rate constant.
- A is the frequency factor.
- Ea is the activation energy.
- R is the ideal gas constant ($8.314 J / (mol \cdot K)$
- T is the temperature in Kelvin
Catalysis
- A catalyst speeds up with out being consumed
- Homogeneous Catalyst
- Heterogeneous Catalyst
- $2H_2O_2(aq) \xrightarrow{I^-(aq)} 2H_2O(l) + O_2(g)$
Algèbre linéaire, Cours et exercices corrigés Book Information
- Claude Descharnps - Professeur de mathématiques spéciales au lycée Louis-le-Grand
- Alain Warusfel - Professeur de mathématiques spéciales au lycée Louis-le-Grand
- Anne-Marie Décaillot colaboration
Table des matières
- Chapitre 1: Espaces vectoriels
- Chapitre 2: Espaces vectoriels de dimension finie
- Chapitre 3: Matrices
- Chapitre 4: Déterminants
- Chapitre 5: Réduction des endomorphismes
- Chapitre 6: Espaces préhilbertiens réels
- Chapitre 7: Annexes
Exercices ( extraits)
- $Soient E un espace vectoriel sur \mathbb{R}, et $p$ et $q$ deux projecteurs of E tels que: $$p + q = id_E$$. Montrer que: $$E = Im , p $ \oplus $ Im , q
- Soient$E$ un espace vectoriel, $f \in \mathcal{L}(E)$ et $x_0 \in$ E, on considère l'application:
- Soit$A = \begin{pmatrix} 1 & 1 & -1 \ 1 & 0 & 0 \ -1 & 0 & 0 \end{pmatrix}$. Calculer $A^n$ pour tout$n \in \mathbb{N}$.
- Calculer le déterminant de la matrice \begin{pmatrix} A = (a_(ij)\end{pmatrix} \in M_n(\mathbb{R})$ définie par$ a_(ij) = \underset{}^{} cos(i+j)$
- Soit $u\in (E) tel que u^3 = u^2 + u - . Монtrer cue uest inversible et exprimer ${u}^{-1}$ en fonction de u.
Formulario de errores comunes
Cinemática
- Posición: $x(t) = x_0 + v_0.t + 1/2.a.t^2$
- Velocidad: $V(t) = V_0 + at$
- Aceleración: $a(t) = a$
Dinámica
- Fuerza gravitatoria: $Fg = m.g$
- Fuerza elástica: $Fe = -k.x$
- Fuerza de rozamiento: $Fr = \mu.N$
Trabajo y energÃa
- EnergÃa cinética: $Ec = 1/2.m.v^2$
- EnergÃa potencial gravitatoria: $Epg = m.g.h$
- EnergÃa potencial elástica: $Epe = 1/2.k.x^2$
- Teorema trabajo-energÃa: $W = \Delta Ec + \Delta Epg + \Delta Epe$
Fluidos
- Diversas formulas including
- Densidad: $\rho = m/V$
- Presión: $P = F/A$
- Principio de ArquÃmedes: $E = \rho.Vg$
- Caudal: $Q = A.V$
Termodinámica
- Calor sensible: $Q = m.c.\Delta T$
- Calor latente: $Q = m.L$
- Primer principio de la termodinámica: $\Delta U = Q - W$
- Rendimiento de una máquina térmica: $\eta = W/Qc$
Electromagnetismo
Several formulas including
- Ley de Coulomb: $F = k.(q1.q2)/d^2$
- Campo eléctrico: $E = F/q$
- Potencial eléctrico: $V = k.q/d$
- Capacidad: $C = Q/V$
- Resistencia: $R = V/I$
- Ley de Ohm: $V = I.R$
- Potencia eléctrica: $P = V.I$
FÃsica cuántica
- EnergÃa de un fotón: $E = h.f$
- Longitud de onda de De Broglie: $\lambda = h/p$
- Principio de incertidumbre de Heisenberg: $\Delta x.\Delta p >= h/4\pi$
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Explanation of using cylindrical shells to calculate volume. Includes the general formula for volume using cylindrical shells. Includes a worked example of a region rotated around the y-axis