Trigonometry: Sine Function
11 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the range of the sine function?

[-1, 1]

What is the period of the sine function in radians?

What is the Pythagorean identity related to the sine function?

sin^2(x) + cos^2(x) = 1

What is the sum formula for the sine function?

<p>sin(a + b) = sin(a)cos(b) + cos(a)sin(b)</p> Signup and view all the answers

What is the inverse of the sine function denoted by?

<p>arcsin(x) or sin^(-1)(x)</p> Signup and view all the answers

What is one of the applications of the sine function in physics?

<p>Modeling periodic phenomena, such as sound waves and light waves</p> Signup and view all the answers

Wat is de définitie van de sinusfunctie in een rechtshoekig driehoek?

<p>De sinusfunctie wordt gedefinieerd als de verhouding van de overstaande zijde tot de hypotenusa van een rechtshoekig driehoek.</p> Signup and view all the answers

Waarom is de cosinusfunctie een even functie?

<p>De cosinusfunctie is een even functie omdat cos(-A) = cos(A).</p> Signup and view all the answers

Wat is de relatie tussen de sinus en cosinusfunctie in een rechtshoekig driehoek?

<p>De relatie tussen de sinus en cosinusfunctie is gegeven door dePythagoreïsche identiteit: sin²(A) + cos²(A) = 1.</p> Signup and view all the answers

Hoe kan men de sinusfunctie van een hoek A berekenen met behulp van de cosinusfunctie?

<p>Men kan de sinusfunctie van een hoek A berekenen met behulp van de cosinusfunctie door gebruik te maken van de relatie: sin(A) = cos(π/2 - A).</p> Signup and view all the answers

Wat is de waarde van sin(A) + cos(A) voor een willekeurige hoek A?

<p>Er is geen algemene waarde voor sin(A) + cos(A) voor een willekeurige hoek A, omdat deze waarde afhankelijk is van de specifieke hoek A.</p> Signup and view all the answers

Study Notes

Sine

Definition: The sine function is a trigonometric function that relates the ratio of the opposite side to the hypotenuse of a right-angled triangle.

Notation: The sine function is denoted by sin(x), where x is the angle in radians or degrees.

Unit Circle: The sine function can be defined using the unit circle, where the sine of an angle is the y-coordinate of the point on the unit circle corresponding to that angle.

Properties:

  • Range: The range of the sine function is [-1, 1].
  • Period: The period of the sine function is 2π (or 360°).
  • Odd Function: The sine function is an odd function, meaning sin(-x) = -sin(x).
  • Inverse: The inverse of the sine function is denoted by arcsin(x) or sin^(-1)(x).

Identities:

  • Pythagorean Identity: sin^2(x) + cos^2(x) = 1
  • Sum and Difference Formulas:
    • sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
    • sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

Graph: The graph of the sine function is a wave-like curve with a maximum value of 1 and a minimum value of -1.

Applications: The sine function has many applications in physics, engineering, and mathematics, including:

  • Modeling periodic phenomena, such as sound waves and light waves
  • Calculating distances and angles in trigonometry
  • Analyzing circular motion and oscillations

Sine Function

  • Relates the ratio of the opposite side to the hypotenuse of a right-angled triangle.
  • Denoted by sin(x), where x is the angle in radians or degrees.

Unit Circle Definition

  • Sine of an angle is the y-coordinate of the point on the unit circle corresponding to that angle.

Properties

  • Range: [-1, 1]
  • Period: 2π (or 360°)
  • Odd function: sin(-x) = -sin(x)
  • Inverse: arcsin(x) or sin^(-1)(x)

Trigonometric Identities

  • Pythagorean Identity: sin^2(x) + cos^2(x) = 1
  • Sum and Difference Formulas:
    • sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
    • sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

Graph Characteristics

  • Wave-like curve with a maximum value of 1 and a minimum value of -1

Applications

  • Modeling periodic phenomena, such as sound waves and light waves
  • Calculating distances and angles in trigonometry
  • Analyzing circular motion and oscillations

Trigonometric Functions

Sine (sin)

  • Defined as the ratio of the opposite side to the hypotenuse of a right-angled triangle
  • sin(A) equals opposite side divided by hypotenuse
  • Range is between -1 and 1 (inclusive)
  • Period is 2π, meaning the function repeats every 2π radians
  • Odd function, meaning sin(-A) is equal to -sin(A)

Cosine (cos)

  • Defined as the ratio of the adjacent side to the hypotenuse of a right-angled triangle
  • cos(A) equals adjacent side divided by hypotenuse
  • Range is between -1 and 1 (inclusive)
  • Period is 2π, meaning the function repeats every 2π radians
  • Even function, meaning cos(-A) is equal to cos(A)

Relationships between Sine and Cosine

  • Pythagorean identity: sin²(A) + cos²(A) equals 1
  • sin(A) equals cos(π/2 - A)
  • cos(A) equals sin(π/2 - A)

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Learn about the sine function, its notation, and properties in the context of right-angled triangles and the unit circle.

More Like This

Use Quizgecko on...
Browser
Browser