Trigonometry: Sine Function

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

What is the range of the sine function?

[-1, 1]

What is the period of the sine function in radians?

What is the Pythagorean identity related to the sine function?

sin^2(x) + cos^2(x) = 1

What is the sum formula for the sine function?

<p>sin(a + b) = sin(a)cos(b) + cos(a)sin(b)</p> Signup and view all the answers

What is the inverse of the sine function denoted by?

<p>arcsin(x) or sin^(-1)(x)</p> Signup and view all the answers

What is one of the applications of the sine function in physics?

<p>Modeling periodic phenomena, such as sound waves and light waves</p> Signup and view all the answers

Wat is de définitie van de sinusfunctie in een rechtshoekig driehoek?

<p>De sinusfunctie wordt gedefinieerd als de verhouding van de overstaande zijde tot de hypotenusa van een rechtshoekig driehoek.</p> Signup and view all the answers

Waarom is de cosinusfunctie een even functie?

<p>De cosinusfunctie is een even functie omdat cos(-A) = cos(A).</p> Signup and view all the answers

Wat is de relatie tussen de sinus en cosinusfunctie in een rechtshoekig driehoek?

<p>De relatie tussen de sinus en cosinusfunctie is gegeven door dePythagoreïsche identiteit: sin²(A) + cos²(A) = 1.</p> Signup and view all the answers

Hoe kan men de sinusfunctie van een hoek A berekenen met behulp van de cosinusfunctie?

<p>Men kan de sinusfunctie van een hoek A berekenen met behulp van de cosinusfunctie door gebruik te maken van de relatie: sin(A) = cos(π/2 - A).</p> Signup and view all the answers

Wat is de waarde van sin(A) + cos(A) voor een willekeurige hoek A?

<p>Er is geen algemene waarde voor sin(A) + cos(A) voor een willekeurige hoek A, omdat deze waarde afhankelijk is van de specifieke hoek A.</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

Sine

Definition: The sine function is a trigonometric function that relates the ratio of the opposite side to the hypotenuse of a right-angled triangle.

Notation: The sine function is denoted by sin(x), where x is the angle in radians or degrees.

Unit Circle: The sine function can be defined using the unit circle, where the sine of an angle is the y-coordinate of the point on the unit circle corresponding to that angle.

Properties:

  • Range: The range of the sine function is [-1, 1].
  • Period: The period of the sine function is 2π (or 360°).
  • Odd Function: The sine function is an odd function, meaning sin(-x) = -sin(x).
  • Inverse: The inverse of the sine function is denoted by arcsin(x) or sin^(-1)(x).

Identities:

  • Pythagorean Identity: sin^2(x) + cos^2(x) = 1
  • Sum and Difference Formulas:
    • sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
    • sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

Graph: The graph of the sine function is a wave-like curve with a maximum value of 1 and a minimum value of -1.

Applications: The sine function has many applications in physics, engineering, and mathematics, including:

  • Modeling periodic phenomena, such as sound waves and light waves
  • Calculating distances and angles in trigonometry
  • Analyzing circular motion and oscillations

Sine Function

  • Relates the ratio of the opposite side to the hypotenuse of a right-angled triangle.
  • Denoted by sin(x), where x is the angle in radians or degrees.

Unit Circle Definition

  • Sine of an angle is the y-coordinate of the point on the unit circle corresponding to that angle.

Properties

  • Range: [-1, 1]
  • Period: 2π (or 360°)
  • Odd function: sin(-x) = -sin(x)
  • Inverse: arcsin(x) or sin^(-1)(x)

Trigonometric Identities

  • Pythagorean Identity: sin^2(x) + cos^2(x) = 1
  • Sum and Difference Formulas:
    • sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
    • sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

Graph Characteristics

  • Wave-like curve with a maximum value of 1 and a minimum value of -1

Applications

  • Modeling periodic phenomena, such as sound waves and light waves
  • Calculating distances and angles in trigonometry
  • Analyzing circular motion and oscillations

Trigonometric Functions

Sine (sin)

  • Defined as the ratio of the opposite side to the hypotenuse of a right-angled triangle
  • sin(A) equals opposite side divided by hypotenuse
  • Range is between -1 and 1 (inclusive)
  • Period is 2π, meaning the function repeats every 2π radians
  • Odd function, meaning sin(-A) is equal to -sin(A)

Cosine (cos)

  • Defined as the ratio of the adjacent side to the hypotenuse of a right-angled triangle
  • cos(A) equals adjacent side divided by hypotenuse
  • Range is between -1 and 1 (inclusive)
  • Period is 2π, meaning the function repeats every 2π radians
  • Even function, meaning cos(-A) is equal to cos(A)

Relationships between Sine and Cosine

  • Pythagorean identity: sin²(A) + cos²(A) equals 1
  • sin(A) equals cos(π/2 - A)
  • cos(A) equals sin(π/2 - A)

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser