Trigonometric Identities Quiz
9 Questions
3 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the Pythagorean Identity?

  • $ an^2( heta) + 1 = rac{1}{ an( heta)}$
  • $ an^2( heta) + rac{1}{ an^2( heta)} = 1$
  • $ an^2( heta) + 1 = rac{1}{ an^2( heta)}$ (correct)
  • $ rac{1}{ an^2( heta)} + 1 = rac{1}{ an^2( heta)}$

What is the value of $sin(90^ heta)$?

  • $ rac{ an(90^ heta)}{0}$
  • $0$
  • $1$ (correct)
  • $ an^2(45^ heta)$

Which of these is a reciprocal identity?

  • $ an( heta) = rac{ an^2( heta)}{ an( heta)}$
  • $ an( heta) = rac{1}{ an(- heta)}$ (correct)
  • $ an( heta) = rac{ rac{1}{ an(- heta)}}{ an(- heta)}$
  • $ an( heta) = rac{ rac{1}{ an( heta)}}{1}$

What does the even-odd identity state about cosine?

<p>$ an^2(- heta) = an^2( heta)$ (C)</p> Signup and view all the answers

What is the measure of an obtuse angle?

<p>$90^ heta ext{ to } 180^ heta$ (D)</p> Signup and view all the answers

Which is true for the double angle formula for sine?

<p>$ an(2 heta) = rac{2 an( heta)}{1 + an^2( heta)}$ (D)</p> Signup and view all the answers

What is the standard position of an angle?

<p>Measured from the positive x-axis (B)</p> Signup and view all the answers

How is an acute angle defined?

<p>$0^ heta &lt; heta &lt; 90^ heta$ (A)</p> Signup and view all the answers

What is the correct half-angle formula for sine?

<p>$ an rac{ heta}{2} = rac{1}{ an heta}$ (A)</p> Signup and view all the answers

Flashcards

Pythagorean Identity

The identity states that (\sin^2(\theta) + \cos^2(\theta) = 1) for any angle (\theta).

Reciprocal Identities

These identities express sine, cosine, and tangent in terms of their reciprocals: (\csc(\theta) = \frac{1}{\sin(\theta)}), (\sec(\theta) = \frac{1}{\cos(\theta)}), (\cot(\theta) = \frac{1}{\tan(\theta)}).

Co-Function Identities

These identities relate sine, cosine, and tangent for complementary angles: (\sin(\frac{\pi}{2} - \theta) = \cos(\theta)), (\tan(\frac{\pi}{2} - \theta) = \cot(\theta)).

Even-Odd Identities

Even and odd properties define trigonometric functions: (\cos(-\theta) = \cos(\theta)) (even), (\sin(-\theta) = -\sin(\theta)) (odd).

Signup and view all the flashcards

Sum Formula for Sine

The formula for sine of a sum of angles: (\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)).

Signup and view all the flashcards

Quadrants of Angles

Angles are categorized in four quadrants based on their measures: I (All positive), II (Sine positive), III (Tangent positive), IV (Cosine positive).

Signup and view all the flashcards

Double Angle Formula for Sine

This formula expresses sine for double angles: (\sin(2\theta) = 2\sin(\theta)\cos(\theta)).

Signup and view all the flashcards

Half Angle Formula for Cosine

The formula for cosine of half the angle: (\cos(\frac{\theta}{2}) = \sqrt{\frac{1 + \cos(\theta)}{2}}).

Signup and view all the flashcards

Types of Angles

Angles can be classified as acute, right, obtuse, straight, or reflex based on their measures.

Signup and view all the flashcards

Study Notes

Trigonometric Identities

  • Basic Identities

    • Pythagorean Identity: ( \sin^2(\theta) + \cos^2(\theta) = 1 )
    • Reciprocal Identities:
      • ( \csc(\theta) = \frac{1}{\sin(\theta)} )
      • ( \sec(\theta) = \frac{1}{\cos(\theta)} )
      • ( \cot(\theta) = \frac{1}{\tan(\theta)} )
    • Quotient Identities:
      • ( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} )
      • ( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} )
  • Co-Function Identities

    • ( \sin(\frac{\pi}{2} - \theta) = \cos(\theta) )
    • ( \cos(\frac{\pi}{2} - \theta) = \sin(\theta) )
    • ( \tan(\frac{\pi}{2} - \theta) = \cot(\theta) )
  • Even-Odd Identities

    • Even: ( \cos(-\theta) = \cos(\theta) )
    • Odd:
      • ( \sin(-\theta) = -\sin(\theta) )
      • ( \tan(-\theta) = -\tan(\theta) )
  • Sum and Difference Formulas

    • ( \sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b) )
    • ( \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) )
    • ( \tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a)\tan(b)} )
  • Double Angle and Half Angle Formulas

    • Double Angle:
      • ( \sin(2\theta) = 2\sin(\theta)\cos(\theta) )
      • ( \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) )
    • Half Angle:
      • ( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}} )
      • ( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} )

Angles and Their Measures

  • Types of Angles

    • Acute Angle: ( 0^\circ < \theta < 90^\circ )
    • Right Angle: ( \theta = 90^\circ )
    • Obtuse Angle: ( 90^\circ < \theta < 180^\circ )
    • Straight Angle: ( \theta = 180^\circ )
    • Reflex Angle: ( 180^\circ < \theta < 360^\circ )
  • Angle Measurement Units

    • Degrees: Full circle = ( 360^\circ )
    • Radians: Full circle = ( 2\pi ) radians (1 radian ( \approx 57.3^\circ ))
    • Conversion: ( \theta \text{ (degrees)} = \theta \text{ (radians)} \times \frac{180}{\pi} )
  • Standard Position of Angles

    • Angles measured from the positive x-axis.
    • Counterclockwise rotation is positive; clockwise rotation is negative.
  • Reference Angles

    • The acute angle formed by the terminal side of an angle and the x-axis.
    • Useful for determining the values of trigonometric functions in different quadrants.
  • Quadrants

    • I: ( 0^\circ < \theta < 90^\circ ) (All functions positive)
    • II: ( 90^\circ < \theta < 180^\circ ) (Sine positive)
    • III: ( 180^\circ < \theta < 270^\circ ) (Tangent positive)
    • IV: ( 270^\circ < \theta < 360^\circ ) (Cosine positive)

Trigonometric Identities

  • Basic Identities include the Pythagorean Identity ( \sin^2(\theta) + \cos^2(\theta) = 1 ), foundational for all trigonometric functions.
  • Reciprocal Identities establish relationships between sine, cosine, and their reciprocal functions:
    • ( \csc(\theta) = \frac{1}{\sin(\theta)} )
    • ( \sec(\theta) = \frac{1}{\cos(\theta)} )
    • ( \cot(\theta) = \frac{1}{\tan(\theta)} )
  • Quotient Identities define tangent and cotangent in terms of sine and cosine:
    • ( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} )
    • ( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} )

Co-Function Identities

  • Pivotal relations between sine, cosine, and tangent for angles complementary to ( \theta ):
    • ( \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) )
    • ( \cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta) )
    • ( \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) )

Even-Odd Identities

  • Even Function: Cosine remains unchanged for negative inputs: ( \cos(-\theta) = \cos(\theta) ).
  • Odd Functions: Sine and tangent change sign for negative inputs:
    • ( \sin(-\theta) = -\sin(\theta) )
    • ( \tan(-\theta) = -\tan(\theta) )

Sum and Difference Formulas

  • Useful for calculating the sine, cosine, and tangent of angle sums or differences:
    • ( \sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b) )
    • ( \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) )
    • ( \tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a)\tan(b)} )

Double Angle and Half Angle Formulas

  • Double Angle Formulas express trigonometric functions of doubled angles:
    • ( \sin(2\theta) = 2\sin(\theta)\cos(\theta) )
    • ( \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) )
  • Half Angle Formulas provide expressions for half angles:
    • ( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}} )
    • ( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} )

Angles and Their Measures

  • Types of Angles are classified based on their measures:
    • Acute: ( 0^\circ < \theta < 90^\circ )
    • Right: ( \theta = 90^\circ )
    • Obtuse: ( 90^\circ < \theta < 180^\circ )
    • Straight: ( \theta = 180^\circ )
    • Reflex: ( 180^\circ < \theta < 360^\circ )

Angle Measurement Units

  • Angles can be measured in degrees and radians:
    • Full circle: ( 360^\circ ) in degrees, ( 2\pi ) radians in radians.
    • Conversion factor: ( \theta \text{ (degrees)} = \theta \text{ (radians)} \times \frac{180}{\pi} ).

Standard Position of Angles

  • Angles are measured from the positive x-axis.
  • Counterclockwise rotation is positive, while clockwise rotation is negative.
  • Reference Angles: Acute angles with the x-axis, crucial for evaluating trigonometric functions across quadrants.
  • Quadrants:
    • I: ( 0^\circ < \theta < 90^\circ ); all trig functions are positive.
    • II: ( 90^\circ < \theta < 180^\circ ); sine is positive.
    • III: ( 180^\circ < \theta < 270^\circ ); tangent is positive.
    • IV: ( 270^\circ < \theta < 360^\circ ); cosine is positive.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Test your understanding of basic trigonometric identities, including Pythagorean, reciprocal, co-function, and even-odd identities. Delve into sum and difference formulas to ensure mastery of important concepts in trigonometry. Perfect for students preparing for exams or those seeking to strengthen their math skills.

Use Quizgecko on...
Browser
Browser