ताप संचरण - विकिरण

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

किस प्रकार के विकिरण में तरंग दैर्ध्य 3cm >  > 7800 Å होती है?

तापीय विकिरण

विकिरण द्वारा ऊष्मा स्थानांतरण कैसे होता है?

  • ऊष्मा तरंगों के माध्यम से ऊष्मा का प्रसार (correct)
  • ऊष्मा का संवहन
  • द्रव्यों के माध्यम से ऊष्मा का प्रसार
  • स्थिर वायु में ऊष्मा का प्रसार

ऊष्मा विकिरण के लिए, ऊष्मा स्थानांतरण की दर पदार्थ के प्रकृति पर निर्भर नहीं करती है।

False (B)

ऊष्मा स्थानांतरण की दर किस इकाई में मापी जाती है?

<p>ऊपर सभी (D)</p> Signup and view all the answers

किस प्रकार के विकिरण द्वारा ऊष्मा और प्रकाश का स्थानांतरण होता है?

<p>विद्युत चुम्बकीय</p> Signup and view all the answers

एक पूर्ण कृष्णिका (PBB) क्या है?

<p>एक पूर्ण कृष्णिका एक काल्पनिक वस्तु है जो सभी तरंग दैर्ध्य के विकिरण को पूरी तरह से अवशोषित करती है।</p> Signup and view all the answers

एक पूर्ण कृष्णिका ऊष्मा विकिरण का उत्सर्जन नहीं करती है।

<p>False (B)</p> Signup and view all the answers

उत्सर्जन शक्ति (emissive power) को परिभाषित करें।

<p>उत्सर्जन शक्ति किसी सतह से प्रति इकाई क्षेत्रफल और समय में उत्सर्जित की जाने वाली ऊष्मा की दर होती है।</p> Signup and view all the answers

कौन सा समीकरण ऊष्मा स्थानांतरण की दर (Q/t) को दर्शाता है?

<p>ऊपर सभी (A)</p> Signup and view all the answers

Flashcards

विकिरण द्वारा ऊष्मा का संचार

विद्युत चुम्बकीय विकिरण के रूप में ऊष्मा का संचार

ऊष्मा विकिरण की तरंग दैर्ध्य

ऊष्मा विकिरण की तरंग दैर्ध्य 3cm से 7800Å के बीच होती है

विकिरण द्वारा ऊष्मा का संचार क्यों?

ऊष्मा का संचार विकिरण द्वारा होता है जब दो पिंड अलग-अलग तापमान पर होते हैं और उनके बीच एक माध्यम नहीं होता है

ऊष्मा संचरण की दर की इकाइयाँ

ऊष्मा संचरण की दर को अभिव्यक्त करने की इकाइयाँ

Signup and view all the flashcards

ऊष्मा संचरण की दर की इकाइयाँ (सामान्यतः)

ऊष्मा संचरण की दर को दर्शाने के लिए सामान्यतः प्रयुक्त इकाइयाँ

Signup and view all the flashcards

ऊष्मा संचरण की दर की इकाइयाँ (मात्रक प्रणाली)

ऊष्मा संचरण की दर को दर्शाने वाली इकाइयाँ (मात्रक प्रणाली)

Signup and view all the flashcards

सतह का प्रभाव

ऊष्मा का संचरण, किसी सतह के गुणों पर निर्भर करता है

Signup and view all the flashcards

पूर्ण विकिरण

सतह का संपूर्ण विकिरण, परावर्तन, अवशोषण और संचरण का योग है

Signup and view all the flashcards

परावर्तन गुणांक

जब ऊष्मा ऊर्जा किसी सतह से परावर्तित होती है

Signup and view all the flashcards

अवशोषण गुणांक

सतह द्वारा अवशोषित की जाने वाली ऊष्मा का प्रतिशत

Signup and view all the flashcards

पारगमन गुणांक

एक सतह द्वारा पारित की जाने वाली ऊष्मा का प्रतिशत

Signup and view all the flashcards

परावर्तन, अवशोषण और संचरण का योग

परावर्तन, अवशोषण और संचरण गुणांक का योग हमेशा 1 होता है

Signup and view all the flashcards

अंधेरे रंगों का प्रभाव

अंधेरे रंगों की सतहों पर प्रकाश, ऊष्मा और विकिरण का अवशोषण अधिक होता है

Signup and view all the flashcards

सफेद रंगों का प्रभाव

सफेद रंगों की सतहों पर प्रकाश, ऊष्मा और विकिरण का अवशोषण कम होता है

Signup and view all the flashcards

परफेक्ट रिफ्लेक्टर

अवशोषण गुणांक लगभग शून्य का होता है

Signup and view all the flashcards

परफेक्ट ब्लैक बॉडी (PBB)

अवशोषण गुणांक लगभग 1 का होता है

Signup and view all the flashcards

परफेक्ट ब्लैक बॉडी

परफेक्ट ब्लैक बॉडी एक आदर्श सतह है जो सभी तरंगदैर्ध्य पर विकिरण को पूरी तरह से सोखती है

Signup and view all the flashcards

उत्सर्जन शक्ति/कुल विकिरण

एक सतह द्वारा एक निश्चित तापमान पर विकिरण की जाने वाली ऊष्मा की मात्रा को मापता है

Signup and view all the flashcards

कुल ऊष्मा विकिरण

एक पृष्ठ के उत्सर्जन शक्ति और उस सतह के क्षेत्रफल का गुणनफल

Signup and view all the flashcards

प्लेटिनम ब्लैक

प्लेटिनम ब्लैक उच्च अवशोषक सामग्री है

Signup and view all the flashcards

काले रंग का अवशोषण गुणांक

काले रंग की सतहों का अवशोषण गुणांक

Signup and view all the flashcards

परफेक्ट ब्लैक बॉडी का उत्सर्जन स्पेक्ट्रम

एक परफेक्ट ब्लैक बॉडी का उत्सर्जन स्पेक्ट्रम

Signup and view all the flashcards

अवशोषक

ऐसी सतहें जो ऊष्मा को अवशोषित करती हैं

Signup and view all the flashcards

Study Notes

Heat Transfer by Radiation

  • Heat radiation is electromagnetic waves with wavelengths ranging from 3 cm to 7800 Å.
  • A medium is not required for transfer by this method.
  • The speed of radiation in vacuum is C.
  • This is the fastest method of heat transfer.
  • Properties of heat radiation are similar to those of light.
  • Intensity (I) is the rate of heat energy flowing perpendicularly through a unit area.
  • Unit: joule/𝑚²𝑠𝑒𝑐 (SI), cal/cm²sec (cgs), or kcal/m²sec (mks).
  • Total heat energy passing through area A in time t is Q = IAt.
  • Power, P = Q/t = IA.
  • The nature of a surface is determined by reflection (r), absorption (a), and transmission (t) coefficients.
  • (r + a + t) = 1. This means that the sum of reflection, absorption, and transmission coefficients equals 1 for any surface.
  • A perfect black body (PBB) has a = 1, so r = t = 0. Such a surface absorbs all incident radiation and reflects/transmits none.
  • Emissive power is the amount of radiation emitted per unit area per unit time.
  • The emissive power (E) for a black body and (e) for other objects, increases rapidly with temperature.
  • Formula for total heat radiation from an area A in time t is Q = EAt (for PBB), Q' = eAt (for any object).
  • Emissivity (ε) is the ratio of emissive power of an object to that of a perfect black body at the same temperature. ε = e/E and 0 < ε ≤ 1.
  • Kirchhoff's Law states that at the same temperature, the ratio of emissivity and absorptivity for any object is equal to the emissivity of a perfect black body. ε = a.

Stefan-Boltzmann's Law

  • Stefan-Boltzmann's Law states that the emissive power (E) of a perfect black body is directly proportional to the fourth power of its absolute temperature (T). E ∝ T⁴ or E = σT⁴.
  • σ is the Stefan-Boltzmann constant, approximately 5.67 × 10⁻⁸ W/m²K⁴.
  • For an object that is not a perfect black body, the law is modified to e = εσ T⁴.
  • The net heat loss (ΔQ) from a body of area A at temperature T₁ to a surrounding environment at temperature T₂ is ΔQ′ = εσA (T₁⁴ - T₂⁴) (for any body). For a black body, it is ΔQ = σA (T₁⁴ - T₂⁴).
  • Newton's law of cooling states that the rate of cooling of a hot object is proportional to the temperature difference between the object and its surroundings.
  • Planck's law describes the spectral energy density of black body radiation as a function of wavelength and temperature.
  • Wien's displacement law relates the peak wavelength of emission (λ𝑚𝑎𝑥) to the absolute temperature (T). λ𝑚𝑎𝑥 ∝ 1/T or λ𝑚𝑎𝑥 * T = b (Wien's constant ≈ 0.0029 m⋅K).
  • The spectral energy density is maximum at a specific wavelength and is directly proportional to the fourth power of the absolute temperature.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

Heat Transfer by Radiation PDF

More Like This

Use Quizgecko on...
Browser
Browser