Solving Quadratic Equations: Factoring, Completing the Square, Quadratic Formula
6 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Сопоставьте методы решения квадратных уравнений с их описанием:

Факторизация = Выражение уравнения как произведение двух биномов Дополнение квадрата = Преобразование уравнения к виду (x + p)^2 = q^2 и извлечение корня Использование квадратной формулы = Общий метод нахождения корней уравнения

Сопоставьте элементы квадратного уравнения с их определениями:

a = Коэффициент при квадратичном члене b = Линейный коэффициент c = Свободный член x = Переменная, которую нужно найти

Сопоставьте корни уравнения x^2 + 5x + 6 = 0 с их значениями:

x = -2, -3 = Корни уравнения после факторизации x = -7.5, 0.5 = Корни уравнения после дополнения квадрата x = -3, -2 = Корни уравнения после использования квадратной формулы

Сопоставьте шаги метода факторизации с их описанием:

<p>Выражение уравнения в виде произведения двух биномов = Первый шаг факторизации Нахождение корней уравнения = Последний шаг факторизации</p> Signup and view all the answers

Сопоставьте шаги метода дополнения квадрата с их описанием:

<p>Преобразование уравнения к виду (x + p)^2 = q^2 = Основной шаг дополнения квадрата Извлечение корня = Шаг после преобразования уравнения</p> Signup and view all the answers

Сопоставьте элементы квадратного уравнения ax^2 + bx + c = 0 с их обозначениями:

<p>a = Ведущий коэффициент b = Линейный коэффициент c = Константный член</p> Signup and view all the answers

Study Notes

Solving Quadratic Equations

A quadratic equation is defined as an algebraic equation of the second degree in one variable. They generally take the form ax^2 + bx + c = 0, where a is the leading coefficient, b is the linear coefficient, c is the constant term, and x is the variable being solved for.

There are several methods to solve quadratic equations:

By Factoring

Factorization involves expressing the quadratic equation in the form of a product of two binomials: (x − p)(x − q) = 0. Here, p and q are the roots of the equation, or the points at which the graph of the quadratic function intersects the x-axis.

Let's consider the example quadratic equation: x^2 + 5x + 6 = 0. This factors as (x + 2)(x + 3) = 0, yielding the roots x = -2 and x = -3.

Completing the Square

Completing the square involves adding and subtracting the quantity (b/2)^2 to transform the equation into the form (x + p)^2 = q^2, where p and q are constants. Then we can apply the square root property to extract the root x = p ± sqrt(q^2).

Consider again our example equation: x^2 + 5x + 6 = 0. Completing the square yields (x + 2.5)^2 = 25, or x = -2.5 ± 5. Thus, the roots are x = -7.5 and x = 0.5.

Using the Quadratic Formula

The quadratic formula is a general method for finding the roots of a given equation. It states that if ax^2 + bx + c = 0, then the solutions are:

x = (-b ± sqrt(b^2 - 4ac)) / (2a)

Using this formula, we can find the roots of any quadratic equation provided the values of a, b, and c are known. For our example equation: 3x^2 - 5x - 2 = 0, we have a = 3, b = -5, and c = -2. Substituting these into the formula gives us:

sqrt((-5)^2 - 4 × 3 × (-2)) / (2 × 3) = sqrt(17) / 6. Therefore, the roots are x = (sqrt(17)/6) + ((-)sqrt(17)/6) = (sqrt(17)+(-sqrt(17)))/6 = 0. This provides two complex number solutions, each with a real part of 0 and imaginary parts differing by an angle of pi.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Learn how to solve quadratic equations using different methods like factoring, completing the square, and the quadratic formula. Practice finding roots and understanding the concepts behind solving quadratic equations.

More Like This

Use Quizgecko on...
Browser
Browser