Podcast
Questions and Answers
به چه معنایی گفته میشود که یک عبارت الجبرایی حاوی کسرها است؟
به چه معنایی گفته میشود که یک عبارت الجبرایی حاوی کسرها است؟
چگونه میتوان یک عبارت الجبرایی را ساده کرد؟
چگونه میتوان یک عبارت الجبرایی را ساده کرد؟
چرا عبارت \( \sqrt{x^2} + y \) به عنوان یک کسر الجبرایی در نظر گرفته نمیشود؟
چرا عبارت \( \sqrt{x^2} + y \) به عنوان یک کسر الجبرایی در نظر گرفته نمیشود؟
چگونه معادلات حاوی کسرهای الجبرایی را حل کنید؟
چگونه معادلات حاوی کسرهای الجبرایی را حل کنید؟
Signup and view all the answers
چند پل به دست خواهید آورد از روش حل معادلات حاوی کسرهای الجبرایی؟
چند پل به دست خواهید آورد از روش حل معادلات حاوی کسرهای الجبرایی؟
Signup and view all the answers
برای حذف کردن کسورات یک معادله، چه باید کرد؟
برای حذف کردن کسورات یک معادله، چه باید کرد؟
Signup and view all the answers
چگونه باید اصطلاحات مشابه را ترکیب کنیم تا عبارت سادهتر شود؟
چگونه باید اصطلاحات مشابه را ترکیب کنیم تا عبارت سادهتر شود؟
Signup and view all the answers
چگونه باید برای حل یک معادله روش صحیح را اعمال کنیم؟
چگونه باید برای حل یک معادله روش صحیح را اعمال کنیم؟
Signup and view all the answers
پس از حل یک معادله، چه نکتهای باید چک شود؟
پس از حل یک معادله، چه نکتهای باید چک شود؟
Signup and view all the answers
پس از حل یک معادله، چگونه بایستی جواب را سادهتر نمایید؟
پس از حل یک معادله، چگونه بایستی جواب را سادهتر نمایید؟
Signup and view all the answers
Study Notes
Solving Equations with Rational Expressions
When working with algebraic expressions involving fractions, which are known as rational expressions, you may encounter situations where these expressions appear within an equation. Solving such equations requires some additional techniques compared to those used with basic algebraic statements. Here's how you can tackle these problems effectively.
Definition of Rational Expression
A rational expression is any fraction wherein both the numerator and denominator contain variables raised to powers. For instance, let x and y be real numbers. Then ( \frac{x^2 - x + 1}{y^3} ) is a rational expression, while ( \frac{xy}{2} ) is also a rational expression. However, ( \sqrt{x^2} + y ) is not considered a rational expression because it contains only nonlinear terms.
Simplifying Rational Expressions Before Solve Equations
Before we start solving equations containing rational expressions, simplification of these expressions is usually necessary. This involves reducing them into their most basic form. For example, if we have the expression ( \frac{a}{b} ), we could divide both the numerator and the denominator by their greatest common divisor, resulting in ( \frac{\cancel{3}}{\cancel{9}} = \frac{1}{3} ).
Solving Equations with Rational Expressions
To solve equations with rational expressions, you can follow these steps:
-
Clear the fractions: If the equation contains fractions, clear them out by multiplying both sides by a suitable expression. For instance, consider the equation ( \frac{2x}{3} = \frac{x + 1}{2} ). To clear the fractions, we multiply both sides by ( 6 ), which is the product of the denominators of both fractions, as (\frac{2x}{3} \times \frac{1}{1} = \frac{x + 1}{2} \times \frac{3}{3}). This results in ( 2x = 3(x + 1) ), which is a simpler equation involving only integers.
-
Combine like terms: If the equation contains rational expressions, you should combine like terms to simplify the expression. For example, if you have ( \frac{a}{b} + \frac{c}{d} = \frac{e}{f} ), you can multiply both sides by the least common multiple of the denominators, which in this case is ( bdf ), to get ( adf + bce = ebf ). Now you can solve for the variable, ( x ), in the resulting equation.
-
Check for extraneous solutions: After solving the equation, you might encounter extraneous solutions, which are solutions that do not satisfy the original equation. For instance, if you have ( \frac{x}{x + 1} = \frac{x - 2}{x - 1} ), you can multiply both sides by ( (x + 1)(x - 1) ) to get ( x(x - 2) = x^2 - x ), which further simplifies to ( x - 2 = 0 ). Solving for ( x ) gives you ( x = 2 ). However, when you check the original equation for this value, you'll find that ( \frac{2}{3} \neq \frac{0}{1} ), so the equation does not hold true for ( x = 2 ).
-
Simplify the resulting expression: After solving the equation, you might find that the answer involves simplifying fractions. For instance, if you have ( \frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{g}{h} ), you can multiply both sides by the least common multiple of the denominators to get ( ahd + bce + bfg = bgh ), then you can solve for the variable, ( x ), in the resulting equation.
By following these steps and using the appropriate techniques for solving equations with rational expressions, you can tackle such problems effectively.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Learn how to solve equations involving rational expressions by clearing fractions, combining like terms, checking for extraneous solutions, and simplifying resulting expressions. Master the techniques needed to effectively tackle algebraic problems with rational expressions.