Podcast
Questions and Answers
به چه معنایی گفته میشود که یک عبارت الجبرایی حاوی کسرها است؟
به چه معنایی گفته میشود که یک عبارت الجبرایی حاوی کسرها است؟
- حداقل در جمع یا تفریق دو عبارت الجبرایی از بالا و پایین استفاده شده است
- هم نمای کسر و هم نمای جذر دارد
- شامل حداقل یک متغیر به توان عددی در صورت یا مخرج است
- هر دو وجود متغیر در صورت و مخرج دارد (correct)
چگونه میتوان یک عبارت الجبرایی را ساده کرد؟
چگونه میتوان یک عبارت الجبرایی را ساده کرد؟
- با ضرب کردن صورت و مخرج در عدد گروه بشمارنده
- با استفاده از رابطه اصلی جبر
- با جمع یا تفریق اعضای صورت و یا مخرج
- با تقسیم صورت و مخرج بر عدد اول بزرگترشان (correct)
چرا عبارت \( \sqrt{x^2} + y \) به عنوان یک کسر الجبرایی در نظر گرفته نمیشود؟
چرا عبارت \( \sqrt{x^2} + y \) به عنوان یک کسر الجبرایی در نظر گرفته نمیشود؟
- حاوی جذر است که در کسرهای الجبرایی نمیآید (correct)
- حاوی توان زوج است که در کسرهای الجبرایی نمیآید
- صورت آن خطی و مخرج نامعلوم است
- نامعقول است و قابل سادهسازی نیست
چگونه معادلات حاوی کسرهای الجبرایی را حل کنید؟
چگونه معادلات حاوی کسرهای الجبرایی را حل کنید؟
چند پل به دست خواهید آورد از روش حل معادلات حاوی کسرهای الجبرایی؟
چند پل به دست خواهید آورد از روش حل معادلات حاوی کسرهای الجبرایی؟
برای حذف کردن کسورات یک معادله، چه باید کرد؟
برای حذف کردن کسورات یک معادله، چه باید کرد؟
چگونه باید اصطلاحات مشابه را ترکیب کنیم تا عبارت سادهتر شود؟
چگونه باید اصطلاحات مشابه را ترکیب کنیم تا عبارت سادهتر شود؟
چگونه باید برای حل یک معادله روش صحیح را اعمال کنیم؟
چگونه باید برای حل یک معادله روش صحیح را اعمال کنیم؟
پس از حل یک معادله، چه نکتهای باید چک شود؟
پس از حل یک معادله، چه نکتهای باید چک شود؟
پس از حل یک معادله، چگونه بایستی جواب را سادهتر نمایید؟
پس از حل یک معادله، چگونه بایستی جواب را سادهتر نمایید؟
Study Notes
Solving Equations with Rational Expressions
When working with algebraic expressions involving fractions, which are known as rational expressions, you may encounter situations where these expressions appear within an equation. Solving such equations requires some additional techniques compared to those used with basic algebraic statements. Here's how you can tackle these problems effectively.
Definition of Rational Expression
A rational expression is any fraction wherein both the numerator and denominator contain variables raised to powers. For instance, let x and y be real numbers. Then ( \frac{x^2 - x + 1}{y^3} ) is a rational expression, while ( \frac{xy}{2} ) is also a rational expression. However, ( \sqrt{x^2} + y ) is not considered a rational expression because it contains only nonlinear terms.
Simplifying Rational Expressions Before Solve Equations
Before we start solving equations containing rational expressions, simplification of these expressions is usually necessary. This involves reducing them into their most basic form. For example, if we have the expression ( \frac{a}{b} ), we could divide both the numerator and the denominator by their greatest common divisor, resulting in ( \frac{\cancel{3}}{\cancel{9}} = \frac{1}{3} ).
Solving Equations with Rational Expressions
To solve equations with rational expressions, you can follow these steps:
-
Clear the fractions: If the equation contains fractions, clear them out by multiplying both sides by a suitable expression. For instance, consider the equation ( \frac{2x}{3} = \frac{x + 1}{2} ). To clear the fractions, we multiply both sides by ( 6 ), which is the product of the denominators of both fractions, as (\frac{2x}{3} \times \frac{1}{1} = \frac{x + 1}{2} \times \frac{3}{3}). This results in ( 2x = 3(x + 1) ), which is a simpler equation involving only integers.
-
Combine like terms: If the equation contains rational expressions, you should combine like terms to simplify the expression. For example, if you have ( \frac{a}{b} + \frac{c}{d} = \frac{e}{f} ), you can multiply both sides by the least common multiple of the denominators, which in this case is ( bdf ), to get ( adf + bce = ebf ). Now you can solve for the variable, ( x ), in the resulting equation.
-
Check for extraneous solutions: After solving the equation, you might encounter extraneous solutions, which are solutions that do not satisfy the original equation. For instance, if you have ( \frac{x}{x + 1} = \frac{x - 2}{x - 1} ), you can multiply both sides by ( (x + 1)(x - 1) ) to get ( x(x - 2) = x^2 - x ), which further simplifies to ( x - 2 = 0 ). Solving for ( x ) gives you ( x = 2 ). However, when you check the original equation for this value, you'll find that ( \frac{2}{3} \neq \frac{0}{1} ), so the equation does not hold true for ( x = 2 ).
-
Simplify the resulting expression: After solving the equation, you might find that the answer involves simplifying fractions. For instance, if you have ( \frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{g}{h} ), you can multiply both sides by the least common multiple of the denominators to get ( ahd + bce + bfg = bgh ), then you can solve for the variable, ( x ), in the resulting equation.
By following these steps and using the appropriate techniques for solving equations with rational expressions, you can tackle such problems effectively.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Learn how to solve equations involving rational expressions by clearing fractions, combining like terms, checking for extraneous solutions, and simplifying resulting expressions. Master the techniques needed to effectively tackle algebraic problems with rational expressions.