Podcast
Questions and Answers
Katera od naslednjih trditev najbolje opisuje razliko med algoritmom za urejanje Merge Sort in algoritmom za urejanje Quick Sort?
Katera od naslednjih trditev najbolje opisuje razliko med algoritmom za urejanje Merge Sort in algoritmom za urejanje Quick Sort?
- *Merge Sort* ima boljšo povprečno časovno zahtevnost kot *Quick Sort*.
- *Quick Sort* vedno zahteva dodaten prostor za urejanje, medtem ko *Merge Sort* ureja na mestu (in-place).
- *Merge Sort* zagotavlja časovno zahtevnost O(n log n) v vseh primerih, medtem ko ima *Quick Sort* v najslabšem primeru časovno zahtevnost O(n^2). (correct)
- *Quick Sort* je stabilen algoritem za urejanje, medtem ko *Merge Sort* ni.
Kdaj bi bila uporaba binarnega iskanja (Binary Search) najbolj primerna izbira namesto linearnega iskanja (Linear Search)?
Kdaj bi bila uporaba binarnega iskanja (Binary Search) najbolj primerna izbira namesto linearnega iskanja (Linear Search)?
- Ko je seznam urejen in želimo poiskati element čim hitreje. (correct)
- Ko je seznam majhen (npr. manj kot 10 elementov).
- Ko ni nujno, da najdemo natančno ujemanje, ampak želimo približno lokacijo elementa.
- Ko je seznam urejen in imamo pogoste vstavitve in brisanja elementov.
Dana je usmerjena graf struktura G = (V, E). Katera od naslednjih predstavitev grafa je najbolj primerna za izvajanje algoritma, ki pogosto potrebuje informacije o obstoju povezave med dvema vozliščema?
Dana je usmerjena graf struktura G = (V, E). Katera od naslednjih predstavitev grafa je najbolj primerna za izvajanje algoritma, ki pogosto potrebuje informacije o obstoju povezave med dvema vozliščema?
- Seznam povezav (Edge List).
- Matrika sosednosti (Adjacency Matrix). (correct)
- Seznam sosednosti (Adjacency List).
- Hash tabela vozlišč.
Katera od naslednjih časovnih zahtevnosti je značilna za algoritem, ki deli problem na manjše podprobleme, jih reši rekurzivno in nato združi rešitve podproblemov?
Katera od naslednjih časovnih zahtevnosti je značilna za algoritem, ki deli problem na manjše podprobleme, jih reši rekurzivno in nato združi rešitve podproblemov?
Pri uporabi algoritma BFS (Breadth-First Search) za iskanje najkrajše poti v neuteženem grafu, kateri podatkovni strukturi je najbolj smiselno dati prednost za shranjevanje vozlišč, ki jih moramo obiskati?
Pri uporabi algoritma BFS (Breadth-First Search) za iskanje najkrajše poti v neuteženem grafu, kateri podatkovni strukturi je najbolj smiselno dati prednost za shranjevanje vozlišč, ki jih moramo obiskati?
Flashcards
Bubble Sort (Mehurčno razvrščanje)
Bubble Sort (Mehurčno razvrščanje)
Algoritem razvrščanja, ki večkrat prehaja skozi seznam, primerja sosednje elemente in jih zamenja, če so v napačnem vrstnem redu.
Selection Sort (Izbirno razvrščanje)
Selection Sort (Izbirno razvrščanje)
Algoritem razvrščanja, ki deli seznam na dva dela: razvrščen podseznam in podseznam nerazvrščenih elementov. V vsakem koraku vzame najmanjši element iz nerazvrščenega dela in ga postavi na konec razvrščenega dela.
Binary Search (Binarno iskanje)
Binary Search (Binarno iskanje)
Algoritem iskanja, ki večkrat deli iskalni interval na pol. Učinkovit za razvrščene sezname.
Linked List (Povezan seznam)
Linked List (Povezan seznam)
Signup and view all the flashcards
Big O Notation (Big O notacija)
Big O Notation (Big O notacija)
Signup and view all the flashcards
Study Notes
- Algorithms are step-by-step procedures for solving problems
- Data structures are particular ways of organizing data in a computer
- Sorting algorithms arrange elements in a specific order
- Search algorithms locate specific elements within a data structure
- Data organization involves structuring data for efficient access and modification
- Complexity analysis evaluates algorithm performance in terms of time and space
Sorting Algorithms
- Sorting algorithms arrange elements of a list in a specific order
- Common sorting orders are numerical or lexicographical
- Bubble Sort repeatedly steps through the list, compares adjacent elements and swaps them if they are in the wrong order
- Bubble sort is simple but inefficient for large lists, with average and worst-case time complexity of O(n^2)
- Insertion Sort builds the final sorted array one item at a time
- Insertion sort is efficient for small data sets, relatively efficient for nearly sorted lists, and has an average and worst-case time complexity of O(n^2)
- Selection Sort divides the input list into two parts: the sorted sublist and the sublist of remaining unsorted elements
- Selection sort is simple to implement, but inefficient for large lists, with average and worst-case time complexity of O(n^2)
- Merge Sort divides the list into equal halves, sorts each half, and then merges the sorted halves
- Merge sort is efficient, with a time complexity of O(n log n), but requires additional space for the merging process
- Quick Sort selects a 'pivot' element and partitions the other elements into two sub-lists, according to whether they are less than or greater than the pivot
- Quick sort is efficient, with an average time complexity of O(n log n), but its worst-case time complexity is O(n^2)
- Heap Sort uses a binary heap data structure to sort elements
- Heap sort is efficient, with a time complexity of O(n log n), and sorts in place
Search Algorithms
- Search algorithms find a specific element in a data structure
- Linear Search sequentially checks each element of the list until a match is found or the entire list has been searched
- Linear search is simple but inefficient for large lists, with a time complexity of O(n)
- Binary Search repeatedly divides the search interval in half
- Binary search is efficient for sorted lists, with a time complexity of O(log n)
- Hash Table Search uses a hash function to compute an index into an array of buckets or slots
- Hash table search can be very efficient, with an average time complexity of O(1) for search, insertion, and deletion, but performance depends on the hash function and collision resolution strategy
Data Organization
- Data organization involves structuring data for efficient access and modification
- Arrays are a collection of elements of the same type, stored in contiguous memory locations
- Arrays offer fast access to elements via index, but have a fixed size
- Linked Lists are a collection of nodes, where each node contains data and a pointer to the next node
- Linked lists offer dynamic size and easy insertion/deletion of elements, but slower access compared to arrays
- Stacks follow the Last-In-First-Out (LIFO) principle
- Stacks are useful for managing function calls and evaluating expressions
- Queues follow the First-In-First-Out (FIFO) principle
- Queues are useful for managing tasks in a system
- Trees are hierarchical data structures where each node has a parent and zero or more children
- Trees facilitate efficient searching, insertion, and deletion operations
- Hash Tables use a hash function to map keys to values
- Hash tables provide fast average-case lookup, insertion, and deletion operations
Complexity Analysis
- Complexity analysis evaluates the performance of algorithms in terms of time and space
- Time complexity refers to the amount of time taken by an algorithm to run as a function of the input size
- Space complexity refers to the amount of memory space required by an algorithm as a function of the input size
- Big O notation describes the upper bound of an algorithm's time or space complexity
- O(1) denotes constant complexity
- O(log n) denotes logarithmic complexity
- O(n) denotes linear complexity
- O(n log n) denotes linearithmic complexity
- O(n^2) denotes quadratic complexity
- O(2^n) denotes exponential complexity
- Understanding complexity is crucial for selecting the most efficient algorithm for a particular task
Graph Structures
- Graph structures consist of nodes (vertices) connected by edges
- Graphs are used to model relationships between objects
- A graph is represented as G = (V, E), where V is the set of vertices and E is the set of edges
- Graphs can be directed or undirected
- In a directed graph, edges have a direction
- In an undirected graph, edges have no direction
- Graphs can be weighted or unweighted
- In a weighted graph, each edge has a weight or cost associated with it
- In an unweighted graph, edges have no weight
- Adjacency Matrix represents a graph as a 2D array, where element [i][j] indicates whether there is an edge from vertex i to vertex j
- Adjacency List represents a graph as an array of lists, where each list represents the neighbors of a vertex
- Breadth-First Search (BFS) explores the graph level by level, starting from a source vertex
- Depth-First Search (DFS) explores the graph by going as deep as possible along each branch before backtracking
- Shortest Path Algorithms find the path with the minimum cost between two vertices in a graph
- Dijkstra's Algorithm finds the shortest paths from a source vertex to all other vertices in a weighted graph with non-negative edge weights
- Bellman-Ford Algorithm finds the shortest paths from a source vertex to all other vertices in a weighted graph, even with negative edge weights
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.