Productos Notables en Álgebra

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

¿Cuál de las siguientes expresiones es equivalente a (x - 2y)²?

  • x² + 4xy + 4y²
  • x² - 2xy + 4y²
  • x² - 4xy + 4y² (correct)
  • x² - 4xy - 4y²

Al factorizar la expresión x³ - 8, ¿qué fórmula se utiliza?

  • Producto de una suma y una diferencia
  • Diferencia de cuadrados
  • Diferencia de cubos (correct)
  • Suma de cubos

Aplicando la fórmula de la suma de cubos, ¿cómo se factoriza la expresión 27a³ + 8b³?

  • (3a + 2b)(9a² - 6ab + 4b²)
  • (9a + 2b)(9a² - 6ab + 4b²)
  • (3a + 2b)(9a² + 6ab + 4b²) (correct)
  • (3a + 2b)(9a² - 12ab + 4b²)

Si (x + 3)² se expande, ¿qué término intermedio se obtiene?

<p>6x (B)</p> Signup and view all the answers

Utilizando la fórmula del producto de una suma y una diferencia, ¿cómo se simplifica la expresión (5x + 2)(5x - 2)?

<p>25x² - 4 (D)</p> Signup and view all the answers

Al factorizar la expresión m² - 49, ¿qué tipo de fórmula se aplica?

<p>Diferencia de cuadrados (A)</p> Signup and view all the answers

En la expansión de (a + b)⁵, ¿qué coeficiente tiene el término a³b²?

<p>10 (C)</p> Signup and view all the answers

La fórmula de la suma de cubos (a³ + b³) = (a + b)(a² - ab + b²) se aplica para factorizar la expresión:

<p>27x³ + 8y³ (C)</p> Signup and view all the answers

Flashcards

Diferencia de cuadrados

Expresa el producto de un binomio diferencia y un binomio suma como una diferencia de cuadrados.

Cuadrado de una suma

Muestra cómo se expande el cuadrado de un binomio suma: (a + b)² = a² + 2ab + b².

Cuadrado de una diferencia

Similar al cuadrado de una suma, pero con sustracción: (a - b)² = a² - 2ab + b².

Producto de suma y diferencia

Caso específico de la diferencia de cuadrados: (a + b)(a - b) = a² - b².

Signup and view all the flashcards

Cubo de una suma

Expansión compleja del cubo de un binomio suma: (a + b)³ = a³ + 3a²b + 3ab² + b³.

Signup and view all the flashcards

Cubo de una diferencia

El cubo de un binomio diferencia: (a - b)³ = a³ - 3a²b + 3ab² - b³.

Signup and view all the flashcards

Suma de cubos

Fórmula de factorización para la suma de dos cubos perfectos: a³ + b³ = (a + b)(a² - ab + b²).

Signup and view all the flashcards

Teorema del binomio

Expresa cualquier potencia entera positiva de (a+b): (a + b)ⁿ = ∑ (n choose k) a^(n-k) b^k.

Signup and view all the flashcards

Study Notes

Notable Products in Algebra

  • Difference of Squares: (a - b)(a + b) = a² - b²

    • Represents the product of a binomial difference and a binomial sum as a difference of squares.
    • Fundamental for factoring expressions fitting this pattern.
  • Square of a Sum: (a + b)² = a² + 2ab + b²

    • Describes how the square of a binomial sum expands.
    • Requires adding twice the product of the terms to the sum of their squares.
  • Square of a Difference: (a - b)² = a² - 2ab + b²

    • Similar to the square of a sum, but subtracts twice the product of the terms from the sum of their squares.
  • Product of a Sum and a Difference: (a + b)(a - b) = a² - b²

    • A particular instance of the difference of squares formula.
    • Useful in factoring expressions where identical terms appear as a sum and a difference.
  • Cube of a Sum: (a + b)³ = a³ + 3a²b + 3ab² + b³

    • A more intricate expansion for the cube of a binomial sum.
    • The terms incorporate binomial coefficients aligning with the third row of Pascal's triangle.
  • Cube of a Difference: (a - b)³ = a³ - 3a²b + 3ab² - b³

    • The cube of a binomial difference, corresponding to the cube of a sum.
    • The signs of the terms alternate.
  • Sum of Cubes: a³ + b³ = (a + b)(a² - ab + b²)

    • Essential factorization for the sum of two perfect cubes.
    • The factorization contains a quadratic term.
  • Difference of Cubes: a³ - b³ = (a - b)(a² + ab + b²)

    • Crucial for factoring the difference of two perfect cubes.
    • Another factorization formula with a quadratic term.
  • General Binomial Expansion: (a + b)ⁿ = ∑ (n choose k) a^(n-k) b^k (for any non-negative integer n)

    • The binomial theorem, representing any positive integer power of (a + b) through binomial coefficients ("n choose k").
    • Involves all possible values of the exponent of 'b'.
  • Important Note: These formulas are essential tools for algebraic manipulations, enabling efficient factoring and expanding of expressions. Precise application of these formulas directly impacts the success of problem-solving.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Algebra Class Quiz
10 questions

Algebra Class Quiz

VigilantUranus avatar
VigilantUranus
Algebraic Identities Quiz
2 questions

Algebraic Identities Quiz

TranquilInspiration4258 avatar
TranquilInspiration4258
Use Quizgecko on...
Browser
Browser