Algebra Class Quiz
10 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

The total surface area (TSA) of a cube is given by the formula $6l^2$.

True

The volume of a cuboid is calculated by multiplying its length, breadth, and height.

True

The curved surface area (CSA) of a cylinder is calculated using the formula $2\pi r^2$.

False

The volume of a cone is one-third of the volume of a cylinder with the same base area and height.

<p>True</p> Signup and view all the answers

The total surface area (TSA) of a sphere is given by $4\pi r^2$.

<p>True</p> Signup and view all the answers

The volume of a hemisphere is two-thirds of the volume of a sphere with the same radius.

<p>True</p> Signup and view all the answers

The lateral surface area (LSA) of a cube is $6l^2$.

<p>False</p> Signup and view all the answers

The perimeter of a cuboid is calculated by the formula $4(l + b + h)$.

<p>True</p> Signup and view all the answers

For the assumed mean method in statistics, mean is given by $a + \frac{\Sigma f_i d_i}{\Sigma f_i}$.

<p>True</p> Signup and view all the answers

The base area of a hemisphere is given by $2\pi r^2$.

<p>False</p> Signup and view all the answers

Study Notes

Number Systems

  • HCF(a, b) × LCM(a, b) = a × b

Algebra

Polynomials

  • For zeroes of quadratic polynomial p(x) = ax² + bx + c, a ≠ 0:
  • Sum of zeroes = -b/a
  • Product of zeroes = c/a
  • For zeroes of quadratic polynomial p(x) = ax³ + bx² + cx + d, a ≠ 0:
  • Sum of zeroes = -b/a
  • Product of zeroes = -d/a
  • Sum of product of zeroes taken two at a time = c/a
  • Identities:
  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + b³ + 3a²b + 3ab²
  • (a - b)³ = a³ - b³ - 3a²b + 3ab²
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  • a³ - b³ = (a - b)(a² + b² + ab)
  • a³ + b³ = (a + b)(a² + b² - ab)
  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
  • If a + b + c = 0, then a³ + b³ + c³ = 3abc

Linear Equations in Two Variables

  • a1/a2 ≠ b1/b2: intersecting, consistent, 1 solution
  • a1/a2 = b1/b2 ≠ c1/c2: parallel, inconsistent, 0 solution
  • a1/a2 = b1/b2 = c1/c2: coincide, infinite solutions, consistent
  • Methods for solving linear equations:
  • Substitution Method
  • Elimination Method
  • Reduction Method

Quadratic Equations

  • ax² + bx + c = 0, where 'a' ≠ 0
  • Quadratic Formula: x = (-b ± √b² - 4ac) / 2a
  • Discriminant (D) = b² - 4ac
  • If D > 0, then two distinct real roots
  • If D = 0, then two equal roots
  • If D < 0, then no real roots

Arithmetic Progression

  • General form of AP: a, a + d, a + 2d, a + 3d,...
  • an = a + (n-1)d
  • Sn = [2a + (n-1)d]/2
  • Sn = n/2[a + l]
  • Sn = Sn-1 + an
  • If a, b, c are in AP then 2b = a + c

Coordinate Geometry

  • Distance Formula: √(x2 - x1)² + (y2 - y1)²
  • Distance of point (p, x) from origin: √p² + x²
  • Section Formula: {(m1x2 + m2x1)/(m1 + m2), (m1y2 + m2y1)/(m1 + m2)}
  • Midpoint Formula: {(x1 + x2)/2, (y1 + y2)/2}

Trigonometry

Trigonometric Identities

  • Complementary angles:
  • sin θ = cos (90° - θ)
  • cos θ = sin (90° - θ)
  • tan θ = cot (90° - θ)
  • Other identities:
  • tan θ = sin θ / cos θ
  • cot θ = cos θ / sin θ
  • sec θ = 1/cos θ
  • cosec θ = 1/sin θ
  • cot θ = 1/tan θ
  • sin²θ + cos²θ = 1
  • tan²θ + 1 = sec²θ
  • 1 + cot²θ = cosec²θ
  • sin²θ / cos²θ = 1/cos²θ
  • sin²θ / sin²θ = 1/sin²θ

Surface Area and Volume

Cube

  • Perimeter: 12l
  • Base Area: l²
  • LSA: 4l²
  • TSA: 6l²
  • Volume: l³
  • d: √3 l

Cuboid

  • Perimeter: 4(l + b + h)
  • Volume: l × b × h
  • Base Area: lb
  • LSA: 2h(l + b)
  • TSA: 2(lb + bh + lh)
  • d: √(l² + b² + h²)

Cylinder

  • Base Area: πr²
  • CSA: 2πrh
  • TSA: 2πr(h + r)
  • Volume: πr²h

Cone

  • Base Area: πr²
  • CSA: πrl
  • TSA: πr(l + r)
  • Volume: 1/3πr²h

Sphere

  • TSA: 4πr²
  • Volume: 4/3πr³

Hemisphere

  • Base Area: πr²
  • CSA: 2πr²
  • TSA: 3πr²
  • Volume: 2/3πr³

Statistics

Mean

  • Direct Method: mean = Σfmi / Σfi
  • Assumed Mean Method: mean = a + (Σfidi / Σfi)

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Test your knowledge of algebraic concepts, including number systems, polynomials, and identities.

Use Quizgecko on...
Browser
Browser