Algebra Class Quiz

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

The total surface area (TSA) of a cube is given by the formula $6l^2$.

True (A)

The volume of a cuboid is calculated by multiplying its length, breadth, and height.

True (A)

The curved surface area (CSA) of a cylinder is calculated using the formula $2\pi r^2$.

False (B)

The volume of a cone is one-third of the volume of a cylinder with the same base area and height.

<p>True (A)</p> Signup and view all the answers

The total surface area (TSA) of a sphere is given by $4\pi r^2$.

<p>True (A)</p> Signup and view all the answers

The volume of a hemisphere is two-thirds of the volume of a sphere with the same radius.

<p>True (A)</p> Signup and view all the answers

The lateral surface area (LSA) of a cube is $6l^2$.

<p>False (B)</p> Signup and view all the answers

The perimeter of a cuboid is calculated by the formula $4(l + b + h)$.

<p>True (A)</p> Signup and view all the answers

For the assumed mean method in statistics, mean is given by $a + \frac{\Sigma f_i d_i}{\Sigma f_i}$.

<p>True (A)</p> Signup and view all the answers

The base area of a hemisphere is given by $2\pi r^2$.

<p>False (B)</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

Number Systems

  • HCF(a, b) × LCM(a, b) = a × b

Algebra

Polynomials

  • For zeroes of quadratic polynomial p(x) = ax² + bx + c, a ≠ 0:
  • Sum of zeroes = -b/a
  • Product of zeroes = c/a
  • For zeroes of quadratic polynomial p(x) = ax³ + bx² + cx + d, a ≠ 0:
  • Sum of zeroes = -b/a
  • Product of zeroes = -d/a
  • Sum of product of zeroes taken two at a time = c/a
  • Identities:
  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + b³ + 3a²b + 3ab²
  • (a - b)³ = a³ - b³ - 3a²b + 3ab²
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  • a³ - b³ = (a - b)(a² + b² + ab)
  • a³ + b³ = (a + b)(a² + b² - ab)
  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
  • If a + b + c = 0, then a³ + b³ + c³ = 3abc

Linear Equations in Two Variables

  • a1/a2 ≠ b1/b2: intersecting, consistent, 1 solution
  • a1/a2 = b1/b2 ≠ c1/c2: parallel, inconsistent, 0 solution
  • a1/a2 = b1/b2 = c1/c2: coincide, infinite solutions, consistent
  • Methods for solving linear equations:
  • Substitution Method
  • Elimination Method
  • Reduction Method

Quadratic Equations

  • ax² + bx + c = 0, where 'a' ≠ 0
  • Quadratic Formula: x = (-b ± √b² - 4ac) / 2a
  • Discriminant (D) = b² - 4ac
  • If D > 0, then two distinct real roots
  • If D = 0, then two equal roots
  • If D < 0, then no real roots

Arithmetic Progression

  • General form of AP: a, a + d, a + 2d, a + 3d,...
  • an = a + (n-1)d
  • Sn = [2a + (n-1)d]/2
  • Sn = n/2[a + l]
  • Sn = Sn-1 + an
  • If a, b, c are in AP then 2b = a + c

Coordinate Geometry

  • Distance Formula: √(x2 - x1)² + (y2 - y1)²
  • Distance of point (p, x) from origin: √p² + x²
  • Section Formula: {(m1x2 + m2x1)/(m1 + m2), (m1y2 + m2y1)/(m1 + m2)}
  • Midpoint Formula: {(x1 + x2)/2, (y1 + y2)/2}

Trigonometry

Trigonometric Identities

  • Complementary angles:
  • sin θ = cos (90° - θ)
  • cos θ = sin (90° - θ)
  • tan θ = cot (90° - θ)
  • Other identities:
  • tan θ = sin θ / cos θ
  • cot θ = cos θ / sin θ
  • sec θ = 1/cos θ
  • cosec θ = 1/sin θ
  • cot θ = 1/tan θ
  • sin²θ + cos²θ = 1
  • tan²θ + 1 = sec²θ
  • 1 + cot²θ = cosec²θ
  • sin²θ / cos²θ = 1/cos²θ
  • sin²θ / sin²θ = 1/sin²θ

Surface Area and Volume

Cube

  • Perimeter: 12l
  • Base Area: l²
  • LSA: 4l²
  • TSA: 6l²
  • Volume: l³
  • d: √3 l

Cuboid

  • Perimeter: 4(l + b + h)
  • Volume: l × b × h
  • Base Area: lb
  • LSA: 2h(l + b)
  • TSA: 2(lb + bh + lh)
  • d: √(l² + b² + h²)

Cylinder

  • Base Area: Ï€r²
  • CSA: 2Ï€rh
  • TSA: 2Ï€r(h + r)
  • Volume: Ï€r²h

Cone

  • Base Area: Ï€r²
  • CSA: Ï€rl
  • TSA: Ï€r(l + r)
  • Volume: 1/3Ï€r²h

Sphere

  • TSA: 4Ï€r²
  • Volume: 4/3Ï€r³

Hemisphere

  • Base Area: Ï€r²
  • CSA: 2Ï€r²
  • TSA: 3Ï€r²
  • Volume: 2/3Ï€r³

Statistics

Mean

  • Direct Method: mean = Σfmi / Σfi
  • Assumed Mean Method: mean = a + (Σfidi / Σfi)

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team
Use Quizgecko on...
Browser
Browser