Platelet and Coagulation Disorder Quiz
666 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is primary thrombocytosis characterized by?

  • A controlled, non-malignant proliferation of platelets in response to thrombopoietin
  • An uncontrolled, malignant proliferation of platelets not in response to thrombopoietin (correct)
  • A decrease in platelet production due to aplastic anemia
  • An increase in platelet destruction due to immune thrombocytopenia
  • What is secondary thrombocytosis characterized by?

  • An uncontrolled, malignant proliferation of platelets not in response to thrombopoietin
  • A decrease in platelet production due to aplastic anemia
  • An increase in platelet destruction due to immune thrombocytopenia
  • An increase in platelet production usually in response to thrombopoietin (correct)
  • What is thrombocytopenia characterized by?

  • A platelet count above 1000 x 10/L
  • An increase in platelet destruction due to thrombotic thrombocytopenic purpura
  • A platelet count below 100 x 10/L (correct)
  • A decrease in platelet production due to tumors
  • What are common platelet disorders?

    <p>Decreased production due to aplastic anemia or tumors</p> Signup and view all the answers

    What are hereditary platelet function disorders?

    <p>Deficiency of membrane GPIIb, deficiency of GPIb, and absence of α granules</p> Signup and view all the answers

    What is Hemophilia A?

    <p>An X-linked recessive condition resulting from a deficiency of factor VIII</p> Signup and view all the answers

    What are laboratory studies for Hemophilia A?

    <p>Normal platelet count, normal bleeding time, normal PT, and prolonged PTT</p> Signup and view all the answers

    What is Von Willebrand disease?

    <p>An autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor</p> Signup and view all the answers

    What are laboratory studies for DIC?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products</p> Signup and view all the answers

    What are acquired platelet function disorders?

    <p>Antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure</p> Signup and view all the answers

    What is the cause of primary thrombocytosis?

    <p>An uncontrolled, malignant proliferation of platelets not in response to thrombopoietin</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>1000 x 10/L</p> </blockquote> Signup and view all the answers

    What is primary thrombocytosis characterized by?

    <p>An uncontrolled, malignant proliferation of platelets not in response to thrombopoietin</p> Signup and view all the answers

    What is secondary thrombocytosis characterized by?

    <p>An increase in platelet production usually in response to thrombopoietin</p> Signup and view all the answers

    What is thrombocytopenia characterized by?

    <p>A platelet count below 100 x 10/L</p> Signup and view all the answers

    What are common platelet disorders?

    <p>Decreased production due to aplastic anemia or tumors</p> Signup and view all the answers

    What are hereditary platelet function disorders?

    <p>Deficiency of membrane GPIIb, deficiency of GPIb, and absence of α granules</p> Signup and view all the answers

    What is Hemophilia A?

    <p>An X-linked recessive condition resulting from a deficiency of factor VIII</p> Signup and view all the answers

    What are laboratory studies for Hemophilia A?

    <p>Normal platelet count, normal bleeding time, normal PT, and prolonged PTT</p> Signup and view all the answers

    What is Von Willebrand disease?

    <p>An autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor</p> Signup and view all the answers

    What are laboratory studies for DIC?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products</p> Signup and view all the answers

    What are acquired platelet function disorders?

    <p>Antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure</p> Signup and view all the answers

    What is the cause of primary thrombocytosis?

    <p>An uncontrolled, malignant proliferation of platelets not in response to thrombopoietin</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>1000 x 10/L</p> </blockquote> Signup and view all the answers

    What is the most common cause of thrombocytopenia?

    <p>Increased platelet destruction</p> Signup and view all the answers

    Which of the following is NOT a hereditary platelet function disorder?

    <p>Deficiency of von Willebrand factor</p> Signup and view all the answers

    What is the most common cause of primary thrombocytosis?

    <p>Essential thrombocythemia</p> Signup and view all the answers

    Which of the following is NOT a clinical feature of Von Willebrand disease?

    <p>Hematuria</p> Signup and view all the answers

    What is the treatment for Hemophilia A?

    <p>Factor VIII concentrate</p> Signup and view all the answers

    Which of the following is NOT an acquired platelet function disorder?

    <p>Deficiency of membrane GPIIb</p> Signup and view all the answers

    What are laboratory studies for DIC?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers)</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>1000 X 10 /L</p> </blockquote> Signup and view all the answers

    Which of the following is NOT a cause of common platelet disorders?

    <p>Increased production in response to thrombopoietin</p> Signup and view all the answers

    What is the most common cause of secondary thrombocytosis?

    <p>Increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    Which of the following is NOT a clinical feature of primary thrombocytosis?

    <p>Prolonged bleeding from wounds</p> Signup and view all the answers

    What is the characteristic laboratory finding in Hemophilia A?

    <p>Prolonged PTT</p> Signup and view all the answers

    What is primary thrombocytosis?

    <p>An uncontrolled, malignant proliferation of platelets not in response to thrombopoietin</p> Signup and view all the answers

    What is secondary thrombocytosis?

    <p>An uncontrolled, malignant proliferation of platelets in response to thrombopoietin</p> Signup and view all the answers

    What platelet count is associated with primary thrombocytosis?

    <blockquote> <p>1000 X 10 /L</p> </blockquote> Signup and view all the answers

    What is thrombocytopenia?

    <p>A platelet count below 100 X 10 /L</p> Signup and view all the answers

    What is Hemophilia A?

    <p>An X-linked recessive condition resulting from a deficiency of factor VIII</p> Signup and view all the answers

    What are laboratory studies for Hemophilia A?

    <p>Normal platelet count, normal bleeding time, normal PT, and prolonged PTT</p> Signup and view all the answers

    What is Von Willebrand disease?

    <p>An autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor</p> Signup and view all the answers

    What are laboratory studies for DIC?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers)</p> Signup and view all the answers

    What are acquired platelet function disorders?

    <p>Antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure</p> Signup and view all the answers

    What are common platelet disorders?

    <p>Decreased platelet production due to aplastic anemia or tumors</p> Signup and view all the answers

    What are hereditary platelet function disorders?

    <p>Deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules</p> Signup and view all the answers

    What is the cause of acquired coagulopathies?

    <p>Vitamin K deficiency and liver disease</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>2000 X 10 /L</p> </blockquote> Signup and view all the answers

    What is the most common cause of secondary thrombocytosis?

    <p>Thrombopoietin</p> Signup and view all the answers

    What is the most common cause of decreased platelet production?

    <p>Aplastic anemia</p> Signup and view all the answers

    What is the deficiency in hereditary platelet function disorder GPIIb?

    <p>Platelet membrane protein</p> Signup and view all the answers

    What is the treatment for Hemophilia A?

    <p>Factor VIII concentrate</p> Signup and view all the answers

    What are the clinical features of Von Willebrand disease?

    <p>Prolonged bleeding from wounds</p> Signup and view all the answers

    What are the laboratory studies for acquired coagulopathies?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products</p> Signup and view all the answers

    What is the most common cause of acquired platelet function disorders?

    <p>Antiplatelet drugs</p> Signup and view all the answers

    What is the most common cause of thrombocytopenia?

    <p>Increased platelet destruction</p> Signup and view all the answers

    What is the laboratory finding in Hemophilia A?

    <p>Normal platelet count, normal bleeding time, prolonged PT, and prolonged PTT</p> Signup and view all the answers

    What is the most common cause of acquired coagulopathies?

    <p>Liver disease</p> Signup and view all the answers

    What is the cause of primary thrombocytosis?

    <p>Malignant proliferation of platelets not in response to thrombopoietin</p> Signup and view all the answers

    What is primary thrombocytosis characterized by?

    <p>A malignant proliferation of platelets not in response to thrombopoietin</p> Signup and view all the answers

    What is secondary thrombocytosis characterized by?

    <p>Increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    What is thrombocytopenia characterized by?

    <p>Abnormal bleeding associated with thrombocytopenia or abnormal platelet function</p> Signup and view all the answers

    What are common platelet disorders?

    <p>Decreased production due to aplastic anemia</p> Signup and view all the answers

    What are hereditary platelet function disorders?

    <p>Deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules</p> Signup and view all the answers

    What is Hemophilia A?

    <p>An X-linked recessive condition resulting from a deficiency of factor VIII</p> Signup and view all the answers

    What are laboratory studies for Hemophilia A?

    <p>Normal platelet count, normal bleeding time, normal PT, and prolonged PTT</p> Signup and view all the answers

    What is Von Willebrand disease?

    <p>A deficiency or qualitative defect in von Willebrand factor</p> Signup and view all the answers

    What are laboratory studies for DIC?

    <p>Decreased platelet count, normal bleeding time, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products</p> Signup and view all the answers

    What are acquired platelet function disorders?

    <p>Antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure</p> Signup and view all the answers

    What causes secondary thrombocytosis?

    <p>Increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    What is the difference between primary and secondary thrombocytosis?

    <p>Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, while secondary thrombocytosis is characterized by increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>3000 X 10 /L</p> </blockquote> Signup and view all the answers

    What is the cause of secondary thrombocytosis?

    <p>Increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    What is the most common cause of decreased platelet production?

    <p>Aplastic anemia</p> Signup and view all the answers

    What is the most common cause of increased platelet destruction?

    <p>Immune thrombocytopenia</p> Signup and view all the answers

    What are the three types of hereditary platelet function disorders?

    <p>Deficiency of membrane GPIIb, deficiency of GPIb, and absence of dense granules</p> Signup and view all the answers

    What is the laboratory finding for Hemophilia A?

    <p>Prolonged PTT</p> Signup and view all the answers

    What is the treatment for Hemophilia A?

    <p>Factor VIII concentrate</p> Signup and view all the answers

    What is the inheritance pattern of Von Willebrand disease?

    <p>Autosomal dominant</p> Signup and view all the answers

    What are the clinical features of Von Willebrand disease?

    <p>Spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females</p> Signup and view all the answers

    What are the laboratory findings for DIC?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers)</p> Signup and view all the answers

    What is the cause of acquired platelet function disorders?

    <p>Hyperglobulinemia associated with multiple myeloma</p> Signup and view all the answers

    What is the cause of Hemophilia A?

    <p>Deficiency of factor VIII</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>1000 X 10 /L</p> </blockquote> Signup and view all the answers

    What is the cause of Hemophilia A?

    <p>Deficiency of factor VIII</p> Signup and view all the answers

    What is the most common clinical presentation of Von Willebrand disease?

    <p>Prolonged bleeding from wounds</p> Signup and view all the answers

    What is the laboratory finding in DIC?

    <p>Decreased platelet count</p> Signup and view all the answers

    What is the characteristic feature of secondary thrombocytosis?

    <p>Increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    What is the cause of acquired platelet function disorders?

    <p>Antiplatelet drugs</p> Signup and view all the answers

    What is the clinical presentation of primary thrombocytosis?

    <p>Hemorrhagic or thrombotic complications</p> Signup and view all the answers

    What is the laboratory finding in Hemophilia A?

    <p>Normal bleeding time, normal PT, and prolonged PTT</p> Signup and view all the answers

    What is the characteristic feature of thrombocytopenia?

    <p>Platelet count below 100 X 10 /L</p> Signup and view all the answers

    What is the cause of Von Willebrand disease?

    <p>Deficiency or qualitative defect in von Willebrand factor</p> Signup and view all the answers

    What is the characteristic feature of hereditary platelet function disorders?

    <p>All of the above</p> Signup and view all the answers

    What is the cause of secondary thrombocytosis?

    <p>Increased platelet production in response to thrombopoietin</p> Signup and view all the answers

    Platelets are produced by the liver.

    <p>False</p> Signup and view all the answers

    Primary thrombocytosis is a benign condition.

    <p>False</p> Signup and view all the answers

    Platelet counts can be >1000 X 10 /L in primary thrombocytosis.

    <p>True</p> Signup and view all the answers

    Secondary thrombocytosis is usually in response to thrombopoietin.

    <p>True</p> Signup and view all the answers

    Thrombocytopenia can result in abnormal bleeding associated with thrombocytopenia.

    <p>True</p> Signup and view all the answers

    Hereditary platelet function disorders include deficiency of membrane GPIIb.

    <p>True</p> Signup and view all the answers

    Acquired platelet function disorders include only antiplatelet drugs.

    <p>False</p> Signup and view all the answers

    Hemophilia A predominately affects females.

    <p>False</p> Signup and view all the answers

    Hemophilia A laboratory studies show prolonged PT and normal PTT.

    <p>False</p> Signup and view all the answers

    Von Willebrand disease is a bleeding disorder associated with excessive clotting.

    <p>False</p> Signup and view all the answers

    Acquired coagulopathies include vitamin K deficiency and liver disease.

    <p>True</p> Signup and view all the answers

    DIC causes widespread microthrombi with elevated fibrinogen.

    <p>False</p> Signup and view all the answers

    Platelets are produced by the fragmentation of megakaryocyte nuclei in the bone marrow.

    <p>False</p> Signup and view all the answers

    Primary thrombocytosis is a controlled, non-malignant proliferation of platelets in response to thrombopoietin.

    <p>False</p> Signup and view all the answers

    Secondary thrombocytosis is usually a response to thrombopoietin and is characterized by elevated platelet counts.

    <p>True</p> Signup and view all the answers

    Thrombocytopenia is characterized by a platelet count above 100 x 10^9/L.

    <p>False</p> Signup and view all the answers

    Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α granules or dense granules.

    <p>True</p> Signup and view all the answers

    Acquired platelet function disorders include hyperglobulinemia associated with multiple myeloma.

    <p>True</p> Signup and view all the answers

    Hemophilia A is an autosomal dominant condition resulting from a deficiency of factor VIII.

    <p>False</p> Signup and view all the answers

    Hemophilia A predominately affects females.

    <p>False</p> Signup and view all the answers

    Von Willebrand disease is an autosomal recessive bleeding disorder.

    <p>False</p> Signup and view all the answers

    Acquired coagulopathies include vitamin K deficiency and liver disease.

    <p>True</p> Signup and view all the answers

    DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage.

    <p>True</p> Signup and view all the answers

    The laboratory studies for Hemophilia A show a prolonged PT and normal PTT.

    <p>False</p> Signup and view all the answers

    Platelets are produced by fragmentation of megakaryocyte cytoplasm in the liver.

    <p>False</p> Signup and view all the answers

    Primary thrombocytosis is a controlled, malignant proliferation of platelets in response to thrombopoietin.

    <p>False</p> Signup and view all the answers

    Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.

    <p>True</p> Signup and view all the answers

    Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.

    <p>True</p> Signup and view all the answers

    Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.

    <p>True</p> Signup and view all the answers

    Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.

    <p>True</p> Signup and view all the answers

    Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.

    <p>True</p> Signup and view all the answers

    Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.

    <p>True</p> Signup and view all the answers

    Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.

    <p>True</p> Signup and view all the answers

    Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.

    <p>True</p> Signup and view all the answers

    Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.

    <p>True</p> Signup and view all the answers

    Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    <p>True</p> Signup and view all the answers

    What is the process by which platelets are produced?

    <p>Fragmentation of megakaryocyte cytoplasm in the bone marrow.</p> Signup and view all the answers

    What is primary thrombocytosis and what can cause it?

    <p>Uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <blockquote> <p>1000 X 10 /L.</p> </blockquote> Signup and view all the answers

    What are the complications associated with primary thrombocytosis?

    <p>Hemorrhagic or thrombotic complications.</p> Signup and view all the answers

    What is secondary thrombocytosis and how is it characterized?

    <p>Increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually &lt; 1000 X 10 /L.</p> Signup and view all the answers

    What is thrombocytopenia and what can cause it?

    <p>Platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function. Common causes include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.</p> Signup and view all the answers

    What are hereditary platelet function disorders and what are some examples?

    <p>Deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.</p> Signup and view all the answers

    What are acquired platelet function disorders and what can cause them?

    <p>Antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.</p> Signup and view all the answers

    What is Hemophilia A and what causes it?

    <p>An X-linked recessive condition resulting from a deficiency of factor VIII.</p> Signup and view all the answers

    What are the clinical features of Von Willebrand disease?

    <p>Spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.</p> Signup and view all the answers

    What are laboratory studies used to diagnose Hemophilia A?

    <p>Normal platelet count, normal bleeding time, normal PT, and prolonged PTT.</p> Signup and view all the answers

    What are laboratory studies used to diagnose DIC?

    <p>Decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).</p> Signup and view all the answers

    What is the difference between primary and secondary thrombocytosis?

    <p>Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, while secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin.</p> Signup and view all the answers

    What are some common platelet disorders?

    <p>Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.</p> Signup and view all the answers

    What are some hereditary platelet function disorders?

    <p>Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.</p> Signup and view all the answers

    What is Hemophilia A and what are its symptoms?

    <p>Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.</p> Signup and view all the answers

    What are the laboratory studies for Hemophilia A?

    <p>Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.</p> Signup and view all the answers

    What is Von Willebrand disease and what are its clinical features?

    <p>Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.</p> Signup and view all the answers

    What is DIC and what are its laboratory findings?

    <p>DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).</p> Signup and view all the answers

    What causes primary thrombocytosis?

    <p>Primary thrombocytosis can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.</p> Signup and view all the answers

    What is the platelet count associated with primary thrombocytosis?

    <p>Platelet counts can be &gt;1000 X 10 /L in primary thrombocytosis.</p> Signup and view all the answers

    What are acquired platelet function disorders?

    <p>Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.</p> Signup and view all the answers

    What is the difference between primary and secondary hemostasis?

    <p>Primary hemostasis involves the formation of a platelet plug, while secondary hemostasis involves the coagulation cascade resulting in the formation of fibrin.</p> Signup and view all the answers

    What is the role of von Willebrand factor in hemostasis?

    <p>Von Willebrand factor mediates platelet adhesion to the subendothelial matrix and stabilizes factor VIII in the circulation.</p> Signup and view all the answers

    • ____________ is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.

    <p>Primary thrombocytosis</p> Signup and view all the answers

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the ____________ marrow.

    <p>bone</p> Signup and view all the answers

    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet ____________.

    <p>function</p> Signup and view all the answers

    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or ____________ granules.

    <p>dense</p> Signup and view all the answers

    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in ____________ failure.

    <p>renal</p> Signup and view all the answers

    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of ____________.

    <p>deficiency</p> Signup and view all the answers

    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII ____________.

    <p>concentrate</p> Signup and view all the answers

    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and ____________ in young females.

    <p>menorrhagia</p> Signup and view all the answers

    • Acquired coagulopathies include vitamin K deficiency and ____________ disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    <p>liver</p> Signup and view all the answers

    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or ____________ complications.

    <p>thrombotic</p> Signup and view all the answers

    -______Secondary______thrombocytosis______is______characterized______by______increased______platelet______production,______usually______in______response______to______thrombopoietin,______and______platelet______count______is______elevated,but______usually<1000______X______10/L.

    Signup and view all the answers

    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or ____________.

    <p>hypersplenism</p> Signup and view all the answers

    • Platelets are produced by fragmentation of ______ cytoplasm in the bone marrow.

    <p>megakaryocyte</p> Signup and view all the answers

    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.

    Signup and view all the answers

    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or ______ complications.

    <p>thrombotic</p> Signup and view all the answers

    • Secondary thrombocytosis is characterized by increased platelet ______ usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.

    <p>production</p> Signup and view all the answers

    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet ______.

    <p>function</p> Signup and view all the answers

    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or ______.

    <p>hypersplenism</p> Signup and view all the answers

    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or ______ granules.

    <p>dense</p> Signup and view all the answers

    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and ______ in renal failure.

    <p>uremia</p> Signup and view all the answers

    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of ______.

    <p>deficiency</p> Signup and view all the answers

    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and ______ in young females.

    <p>menorrhagia</p> Signup and view all the answers

    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (______).

    <p>D.dimers</p> Signup and view all the answers

    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is ______ concentrate.

    <p>factor VIII</p> Signup and view all the answers

    What is the process that involves the removal of fibrin and is initiated when clotting begins?

    <p>Fibrinolysis</p> Signup and view all the answers

    Which of the following is NOT a group of coagulation proteins?

    <p>Hemoglobin group</p> Signup and view all the answers

    Which group of coagulation factors contains vitamin K dependent coagulation factors II, VII, IX, and X?

    <p>Prothrombin group</p> Signup and view all the answers

    Which group of coagulation factors is involved in the initial activation of the intrinsic pathway and fibrinolysis?

    <p>Contact group</p> Signup and view all the answers

    What is the process that involves the formation of an unstable platelet plug?

    <p>Primary hemostasis</p> Signup and view all the answers

    What is the process that involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin?

    <p>Secondary hemostasis</p> Signup and view all the answers

    What are the three indices used to classify anemia based on erythrocyte size and hemoglobin content?

    <p>MCV, MCH, MCHC</p> Signup and view all the answers

    Where do most coagulation reactions occur?

    <p>On the surface membrane of activated platelets</p> Signup and view all the answers

    What are the two stages of hemostasis?

    <p>Primary and secondary</p> Signup and view all the answers

    What are the coagulation mechanisms involved in?

    <p>Blood clotting</p> Signup and view all the answers

    Which group of coagulation factors contains coagulation factors I, V, VIII, and XIII?

    <p>Fibrinogen group</p> Signup and view all the answers

    What do erythrocyte indices help classify erythrocytes based on?

    <p>Size and hemoglobin content</p> Signup and view all the answers

    Which type of hemostasis involves the formation of an unstable platelet plug?

    <p>Primary hemostasis</p> Signup and view all the answers

    Which type of hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin?

    <p>Secondary hemostasis</p> Signup and view all the answers

    Which group of coagulation proteins contains vitamin K dependent coagulation factors II, VII, IX, and X?

    <p>Prothrombin group</p> Signup and view all the answers

    Which group of coagulation proteins contains coagulation factors I, V, VIII, and XIII?

    <p>Fibrinogen group</p> Signup and view all the answers

    Which group of coagulation proteins includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis?

    <p>Contact group</p> Signup and view all the answers

    Where do most coagulation reactions occur?

    <p>On the surface membrane of activated platelets</p> Signup and view all the answers

    What is the process of removing fibrin called?

    <p>Fibrinolysis</p> Signup and view all the answers

    What are the three indices used to classify anemia?

    <p>Mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC)</p> Signup and view all the answers

    Which coagulation pathway is initiated by tissue damage?

    <p>Extrinsic pathway</p> Signup and view all the answers

    Which coagulation pathway is initiated by exposure of blood to a negatively charged surface?

    <p>Intrinsic pathway</p> Signup and view all the answers

    Which coagulation pathway converges into the formation of factor Xa?

    <p>Common pathway</p> Signup and view all the answers

    Which coagulation factor is involved in the conversion of fibrinogen to fibrin?

    <p>Factor II</p> Signup and view all the answers

    Which coagulation factor is involved in the stabilization of the fibrin clot?

    <p>Factor XIII</p> Signup and view all the answers

    What is the process of removing fibrin called?

    <p>Fibrinolysis</p> Signup and view all the answers

    Which pathway involves coagulation factors XI, XII, PK, and HK?

    <p>Intrinsic pathway</p> Signup and view all the answers

    What is the function of the fibrinogen group of coagulation factors?

    <p>To transform soluble fibrinogen into insoluble fibrin</p> Signup and view all the answers

    Which coagulation factors are vitamin K dependent?

    <p>Factors II, VII, IX, and X</p> Signup and view all the answers

    Where do most coagulation reactions occur?

    <p>On the surface membrane of activated platelets</p> Signup and view all the answers

    What is the classification of erythrocytes based on their size and hemoglobin content called?

    <p>Erythrocyte indices</p> Signup and view all the answers

    What is the first stage of hemostasis?

    <p>Platelet plug formation</p> Signup and view all the answers

    Which pathway involves tissue factor and coagulation factors VII, X, and V?

    <p>Extrinsic pathway</p> Signup and view all the answers

    What is the function of the contact group of coagulation factors?

    <p>To initiate the intrinsic pathway</p> Signup and view all the answers

    What is the process of transforming soluble fibrinogen into insoluble fibrin called?

    <p>Coagulation</p> Signup and view all the answers

    Which group of coagulation factors is involved in fibrinolysis?

    <p>Contact group</p> Signup and view all the answers

    What are the three indices used to classify anemia?

    <p>MCV, MCH, and MCHC</p> Signup and view all the answers

    What are the two stages of hemostasis?

    <p>Primary and secondary</p> Signup and view all the answers

    What is the function of the fibrinogen group of coagulation factors?

    <p>To reinforce the platelet plug with fibrin</p> Signup and view all the answers

    Which coagulation factors are contained in the Prothrombin group?

    <p>Factors II, VII, IX, and X</p> Signup and view all the answers

    Where do most coagulation reactions occur?

    <p>On the surface membrane of activated platelets</p> Signup and view all the answers

    What is the function of the contact group of coagulation factors?

    <p>To initiate fibrinolysis</p> Signup and view all the answers

    What is fibrinolysis?

    <p>The process of removing fibrin</p> Signup and view all the answers

    What are the three indices used to classify anemia?

    <p>Mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration</p> Signup and view all the answers

    Which coagulation mechanism pathway is activated by tissue damage?

    <p>Extrinsic pathway</p> Signup and view all the answers

    What are the two pathways involved in the coagulation mechanism?

    <p>Intrinsic and extrinsic</p> Signup and view all the answers

    What is the function of the platelet plug in hemostasis?

    <p>To stop bleeding by sealing the damaged blood vessels</p> Signup and view all the answers

    What are the three groups of coagulation proteins?

    <p>Prothrombin group, fibrinogen group, and contact group</p> Signup and view all the answers

    What is the function of the intrinsic pathway in the coagulation mechanism?

    <p>To form a stable clot</p> Signup and view all the answers

    Is hemostasis a process that involves two stages?

    <p>True</p> Signup and view all the answers

    Does primary hemostasis involve the formation of a stable platelet plug?

    <p>False</p> Signup and view all the answers

    Does secondary hemostasis involve the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin?

    <p>True</p> Signup and view all the answers

    Are coagulation proteins divided into two groups?

    <p>False</p> Signup and view all the answers

    Which group of coagulation proteins contains vitamin K dependent factors?

    <p>False</p> Signup and view all the answers

    Which group of coagulation proteins contains coagulation factors I, V, VIII, and XIII?

    <p>False</p> Signup and view all the answers

    What is the function of the contact group of coagulation factors?

    <p>False</p> Signup and view all the answers

    Do most coagulation reactions occur on the surface membrane of activated platelets?

    <p>True</p> Signup and view all the answers

    Is fibrinolysis the process of removing fibrin that is initiated when clotting begins?

    <p>False</p> Signup and view all the answers

    Do the erythrocyte indices help classify erythrocytes based on their size and hemoglobin content?

    <p>True</p> Signup and view all the answers

    How many indices are used to classify anemia?

    <p>False</p> Signup and view all the answers

    What are the three indices used to classify anemia?

    <p>False</p> Signup and view all the answers

    Primary hemostasis involves the formation of a stable platelet plug.

    <p>False</p> Signup and view all the answers

    Secondary hemostasis involves the transformation of soluble fibrinogen into insoluble fibrin.

    <p>True</p> Signup and view all the answers

    Coagulation mechanism involves only intrinsic and extrinsic pathways.

    <p>False</p> Signup and view all the answers

    The prothrombin group contains coagulation factors II, VII, IX, and X.

    <p>True</p> Signup and view all the answers

    The fibrinogen group contains coagulation factors II, V, VIII, and XIII.

    <p>False</p> Signup and view all the answers

    The contact group includes coagulation factors XI, XII, PK, and HK.

    <p>True</p> Signup and view all the answers

    All coagulation reactions occur on the surface membrane of activated platelets.

    <p>False</p> Signup and view all the answers

    Fibrinolysis is the process of removing platelets from the site of injury.

    <p>False</p> Signup and view all the answers

    Erythrocyte indices help classify erythrocytes based on their shape and size.

    <p>False</p> Signup and view all the answers

    The three indices used to classify anemia are MCV, MCH, and MCHC.

    <p>True</p> Signup and view all the answers

    Primary thrombocytosis is characterized by excessive platelet production.

    <p>True</p> Signup and view all the answers

    Fibrinogen is a vitamin K dependent coagulation factor.

    <p>False</p> Signup and view all the answers

    What are the two stages of hemostasis and what does each stage involve?

    <p>The two stages of hemostasis are primary and secondary. Primary hemostasis involves the formation of an unstable platelet plug, while secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.</p> Signup and view all the answers

    What are the three pathways involved in the coagulation mechanism?

    <p>The coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.</p> Signup and view all the answers

    What are the three groups of coagulation proteins and which factors are included in each group?

    <p>The three groups of coagulation proteins are prothrombin group, fibrinogen group, and contact group. Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X. Fibrinogen group contains coagulation factors I, V, VIII, and XIII. Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.</p> Signup and view all the answers

    Where do most coagulation reactions occur?

    <p>Most coagulation reactions occur on the surface membrane of activated platelets.</p> Signup and view all the answers

    What is fibrinolysis and when is it initiated?

    <p>Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.</p> Signup and view all the answers

    What are erythrocyte indices and how do they help classify erythrocytes?

    <p>Erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.</p> Signup and view all the answers

    What are the three indices used to classify anemia?

    <p>The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).</p> Signup and view all the answers

    What is the function of the platelet plug in hemostasis?

    <p>The function of the platelet plug in hemostasis is to prevent bleeding from an injured blood vessel.</p> Signup and view all the answers

    What are the intrinsic and extrinsic pathways in the coagulation mechanism?

    <p>The intrinsic pathway is activated by exposed collagen and involves coagulation factors VIII, IX, XI, and XII. The extrinsic pathway is activated by tissue factor and involves coagulation factors VII, X, V, and II.</p> Signup and view all the answers

    What is the role of vitamin K in the coagulation mechanism?

    <p>Vitamin K is necessary for the synthesis of coagulation factors II, VII, IX, and X in the liver.</p> Signup and view all the answers

    What is the role of the contact group in the coagulation mechanism?

    <p>The contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.</p> Signup and view all the answers

    What is the function of fibrin in the coagulation mechanism?

    <p>Fibrin reinforces the platelet plug by forming an insoluble meshwork that stabilizes the clot.</p> Signup and view all the answers

    • Hemostasis involves ______ stages: primary and secondary.

    <p>two</p> Signup and view all the answers

    • Primary hemostasis involves the formation of an ______ platelet plug.

    <p>unstable</p> Signup and view all the answers

    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into ______ fibrin.

    <p>insoluble</p> Signup and view all the answers

    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and ______ pathways.

    <p>common</p> Signup and view all the answers

    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and ______ group.

    <p>contact</p> Signup and view all the answers

    • Prothrombin group contains vitamin K dependent coagulation factors ______, VII, IX, and X.

    <p>II</p> Signup and view all the answers

    • Fibrinogen group contains coagulation factors I, V, VIII, and ______.

    <p>XIII</p> Signup and view all the answers

    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and ______.

    <p>fibrinolysis</p> Signup and view all the answers

    • Most coagulation reactions occur on the surface membrane of ______ platelets.

    <p>activated</p> Signup and view all the answers

    • Fibrinolysis is the process of removing ______ and is initiated when clotting begins.

    <p>fibrin</p> Signup and view all the answers

    • The erythrocyte indices help classify erythrocytes based on their ______ and hemoglobin content.

    <p>size</p> Signup and view all the answers

    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Signup and view all the answers

    What is the major humeral factor regulating megakaryocyte and platelet development?

    <p>Thrombopoietin</p> Signup and view all the answers

    What is the first stimulation for platelet activation?

    <p>Platelet adhesion to sub-endothelium</p> Signup and view all the answers

    What are the four zones of platelet ultra-structure?

    <p>Peripheral zone, structural zone, organelle zone, and membrane system</p> Signup and view all the answers

    What is the result of the interaction between the blood vessel, platelets, and coagulation proteins?

    <p>Hemostasis</p> Signup and view all the answers

    What is the process that requires several activation events, including adhesion, shape change, secretion, and aggregation?

    <p>Platelet plug formation</p> Signup and view all the answers

    What is the function of platelets in maintaining blood vessel integrity?

    <p>To form secondary hemostatic plugs</p> Signup and view all the answers

    What is the name of the precursor cells in the bone marrow that give rise to platelets?

    <p>Megakaryocyte</p> Signup and view all the answers

    What is the process that involves the interaction between platelets and coagulation proteins to form secondary hemostatic plugs?

    <p>Secondary hemostasis</p> Signup and view all the answers

    What is the name of the cytokines and growth factors that affect megakaryocyte development?

    <p>Interleukin-6</p> Signup and view all the answers

    What connects two platelets during platelet adhesion?

    <p>Fibrinogen</p> Signup and view all the answers

    What is the name of the process that dissolves fibrin clots and restores blood flow?

    <p>Fibrinolysis</p> Signup and view all the answers

    What is the name of the platelet activation event that involves changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid?

    <p>Platelet shape change</p> Signup and view all the answers

    What is the major humeral factor regulating megakaryocyte and platelet development?

    <p>Thrombopoietin</p> Signup and view all the answers

    What are platelets?

    <p>Anucleate fragments of cytoplasm</p> Signup and view all the answers

    What is the first stimulation for platelet activation?

    <p>Platelet adhesion to sub-endothelium</p> Signup and view all the answers

    What is the result of the interaction between the blood vessel, platelets, and coagulation proteins?

    <p>Hemostasis</p> Signup and view all the answers

    What is the function of platelets in maintaining blood vessel integrity and healing injured tissue?

    <p>To interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs</p> Signup and view all the answers

    What are the three phases of hemostasis?

    <p>Platelet activation, coagulation, and fibrinolysis</p> Signup and view all the answers

    What is the major humeral factor regulating megakaryocyte and platelet development?

    <p>Thrombopoietin</p> Signup and view all the answers

    What is the role of fibrinogen in platelet adhesion?

    <p>Fibrinogen connects two platelets</p> Signup and view all the answers

    What is platelet aggregation?

    <p>The joining of platelets together</p> Signup and view all the answers

    What are platelets?

    <p>Anucleate fragments of cytoplasm</p> Signup and view all the answers

    What is the role of platelet granule release in activating platelets?

    <p>To facilitate platelet granule release into surrounding tissues</p> Signup and view all the answers

    What is the first stimulation for platelet activation?

    <p>Platelet adhesion to sub-endothelium</p> Signup and view all the answers

    What is the result of the interaction between the blood vessel, platelets, and coagulation proteins?

    <p>Hemostasis</p> Signup and view all the answers

    What are the four zones of platelet ultra-structure?

    <p>Peripheral zone, structural zone, organelle zone, and membrane system</p> Signup and view all the answers

    What is the process of the formation of the platelet plug?

    <p>Platelet adhesion, shape change, secretion, and aggregation</p> Signup and view all the answers

    What is the function of platelets in maintaining blood vessel integrity and healing injured tissue?

    <p>To interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs</p> Signup and view all the answers

    What are the three phases of hemostasis?

    <p>Platelet activation, coagulation, and fibrinolysis</p> Signup and view all the answers

    What is the function of platelet activation?

    <p>To induce changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid</p> Signup and view all the answers

    What is the role of fibrinogen in platelet adhesion?

    <p>Fibrinogen connects two platelets</p> Signup and view all the answers

    What is platelet aggregation?

    <p>The joining of platelets together</p> Signup and view all the answers

    What is the role of platelet granule release in activating platelets?

    <p>To facilitate platelet granule release into surrounding tissues</p> Signup and view all the answers

    What are the four zones of platelet ultra-structure?

    <p>Peripheral zone, structural zone, organelle zone, and membrane system</p> Signup and view all the answers

    What is the process of the formation of the platelet plug?

    <p>Platelet adhesion, shape change, secretion, and aggregation</p> Signup and view all the answers

    What is the function of platelet activation?

    <p>To induce changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid</p> Signup and view all the answers

    What is the major humeral factor regulating megakaryocyte and platelet development?

    <p>Thrombopoietin</p> Signup and view all the answers

    What are platelets and where are they derived from?

    <p>Cells in the bone marrow</p> Signup and view all the answers

    What is the platelet ultra-structure divided into?

    <p>Four zones</p> Signup and view all the answers

    What is the function of platelets?

    <p>Maintain blood vessel integrity</p> Signup and view all the answers

    What is the result of the interaction between the blood vessel, platelets, and coagulation proteins?

    <p>Hemostasis</p> Signup and view all the answers

    What are the three phases of hemostasis?

    <p>Primary hemostasis, secondary hemostasis, and fibrinolysis</p> Signup and view all the answers

    What is the first stimulation for platelet activation?

    <p>Platelet adhesion to sub-endothelium</p> Signup and view all the answers

    What does platelet activation include?

    <p>Changes in platelet shape</p> Signup and view all the answers

    What connects two platelets during platelet adhesion?

    <p>Fibrinogen</p> Signup and view all the answers

    What facilitates platelet granule release into surrounding tissues, activating platelets?

    <p>Platelet granule release</p> Signup and view all the answers

    What are the activation events required for the formation of the platelet plug?

    <p>Adhesion, shape change, secretion, and aggregation</p> Signup and view all the answers

    What are the cytokines and growth factors that affect megakaryocyte development?

    <p>Thrombopoietin and cytokines</p> Signup and view all the answers

    Platelets are cells that contain a nucleus.

    <p>False</p> Signup and view all the answers

    Thrombopoietin is the major factor regulating megakaryocyte and platelet development.

    <p>True</p> Signup and view all the answers

    Platelets are responsible for maintaining blood vessel integrity.

    <p>True</p> Signup and view all the answers

    The platelet ultra-structure is divided into three zones.

    <p>False</p> Signup and view all the answers

    Secondary hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.

    <p>False</p> Signup and view all the answers

    Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.

    <p>True</p> Signup and view all the answers

    Platelet activation does not include changes in surface receptor.

    <p>False</p> Signup and view all the answers

    Platelet aggregation is the joining of red blood cells together.

    <p>False</p> Signup and view all the answers

    Fibrinogen connects two platelets during platelet adhesion.

    <p>True</p> Signup and view all the answers

    Platelet granule release is not involved in the formation of the platelet plug.

    <p>False</p> Signup and view all the answers

    The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    <p>True</p> Signup and view all the answers

    Fibrinolysis is not one of the three phases of hemostasis.

    <p>False</p> Signup and view all the answers

    Platelets are cells derived from precursor cells in the bone marrow called Megakaryocyte.

    <p>False</p> Signup and view all the answers

    Thrombopoietin is the major humeral factor regulating erythrocyte and platelet development.

    <p>False</p> Signup and view all the answers

    Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte.

    <p>True</p> Signup and view all the answers

    The platelet ultra-structure is divided into three zones: peripheral zone, structural zone, and membrane system.

    <p>False</p> Signup and view all the answers

    Platelets help maintain blood vessel integrity, but do not aid in healing injured tissue.

    <p>False</p> Signup and view all the answers

    Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins, but not fibrinolysis.

    <p>False</p> Signup and view all the answers

    Secondary hemostasis is the phase of hemostasis that involves platelet activation.

    <p>False</p> Signup and view all the answers

    Platelet adhesion to sub-endothelium is the last stimulation for platelet activation.

    <p>False</p> Signup and view all the answers

    Platelet shape changes from disc-shaped to spiny spheres without pseudopods.

    <p>False</p> Signup and view all the answers

    Fibrinogen connects two platelets during platelet aggregation.

    <p>True</p> Signup and view all the answers

    Platelet granule release facilitates platelet granule release into surrounding tissues, inhibiting platelet activation.

    <p>False</p> Signup and view all the answers

    The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation, but not platelet granule release.

    <p>False</p> Signup and view all the answers

    What is the source of platelets and where are they derived from?

    <p>Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.</p> Signup and view all the answers

    What are platelets and what is their structure?

    <p>Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells. The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.</p> Signup and view all the answers

    What is the major humeral factor regulating megakaryocyte and platelet development?

    <p>The major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.</p> Signup and view all the answers

    What is hemostasis and what are the three phases of hemostasis?

    <p>Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins. Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.</p> Signup and view all the answers

    What is the first stimulation for platelet activation?

    <p>Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.</p> Signup and view all the answers

    What changes occur during platelet activation?

    <p>Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid. Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.</p> Signup and view all the answers

    What is fibrinogen's role in the formation of the platelet plug?

    <p>Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.</p> Signup and view all the answers

    What are the events required for the formation of the platelet plug?

    <p>The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.</p> Signup and view all the answers

    What are the functions of platelets in maintaining hemostasis?

    <p>Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.</p> Signup and view all the answers

    What are the cytokines and growth factors that affect megakaryocyte development?

    <p>Several cytokines and growth factors affect megakaryocyte development.</p> Signup and view all the answers

    What is the role of platelet granule release in activating platelets?

    <p>Platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.</p> Signup and view all the answers

    What is the ultra-structure of platelets?

    <p>The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.</p> Signup and view all the answers

    Platelets are membrane-bound anucleate fragments of cytoplasm of ______

    <p>megakaryocyte</p> Signup and view all the answers

    The major humeral factor regulating megakaryocyte and platelet development is ______

    <p>thrombopoietin</p> Signup and view all the answers

    The platelet ultra-structure divided into four zones: ______, structural zone, organelle zone, and membrane system

    <p>peripheral zone</p> Signup and view all the answers

    Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and ______ proteins to form primary and secondary hemostatic plugs

    <p>coagulation</p> Signup and view all the answers

    Primary hemostasis, secondary hemostasis, and ______ are the three phases of hemostasis

    <p>fibrinolysis</p> Signup and view all the answers

    Platelet adhesion to sub-endothelium is the first stimulation for ______ activation

    <p>platelet</p> Signup and view all the answers

    Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and ______ is the joining of platelets together

    <p>aggregation</p> Signup and view all the answers

    Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, ______ platelets

    <p>activating</p> Signup and view all the answers

    The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and ______

    <p>aggregation</p> Signup and view all the answers

    Several ______ and growth factors affect megakaryocyte development

    <p>cytokines</p> Signup and view all the answers

    Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane ______

    <p>phospholipid</p> Signup and view all the answers

    Platelets are the smallest circulating hematological elements, derived from precursor cells in the ______ called Megakaryocyte

    <p>bone marrow</p> Signup and view all the answers

    • Platelets are derived from precursor cells in the bone marrow called ______.

    <p>Megakaryocyte</p> Signup and view all the answers

    • Platelets are ______ fragments of cytoplasm of megakaryocyte, not truly cells.

    <p>membrane-bound anucleate</p> Signup and view all the answers

    • The major humeral factor regulating megakaryocyte and platelet development is ______.

    <p>thrombopoietin</p> Signup and view all the answers

    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form ______ and secondary hemostatic plugs.

    <p>primary</p> Signup and view all the answers

    • Hemostasis is the result of the interaction between the ______, platelets, and coagulation proteins.

    <p>blood vessel</p> Signup and view all the answers

    • Platelet adhesion to sub-endothelium is the first stimulation for ______ activation.

    <p>platelet</p> Signup and view all the answers

    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and ______ phospholipid.

    <p>membrane</p> Signup and view all the answers

    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and ______ is the joining of platelets together.

    <p>aggregation</p> Signup and view all the answers

    • Fibrinogen connects two platelets during platelet adhesion, and ______ release facilitates platelet granule release into surrounding tissues, activating platelets.

    <p>platelet granule</p> Signup and view all the answers

    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and ______.

    <p>aggregation</p> Signup and view all the answers

    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and ______ system.

    <p>membrane</p> Signup and view all the answers

    • [Blank] is the process of breaking down the fibrin clot formed during hemostasis.

    <p>Fibrinolysis</p> Signup and view all the answers

    What is the origin of platelets and what are they made of?

    <p>Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte. Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.</p> Signup and view all the answers

    What factors affect megakaryocyte development and what is the major humeral factor regulating it?

    <p>Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.</p> Signup and view all the answers

    How is the platelet ultra-structure divided and what are its components?

    <p>The platelet ultra-structure is divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.</p> Signup and view all the answers

    What are the functions of platelets in the body?

    <p>Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.</p> Signup and view all the answers

    What is hemostasis and what are the three phases of hemostasis?

    <p>Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins. Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.</p> Signup and view all the answers

    What is the first stimulation for platelet activation?

    <p>Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.</p> Signup and view all the answers

    What changes occur during platelet activation?

    <p>Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.</p> Signup and view all the answers

    What happens to the shape of platelets during activation and what is aggregation?

    <p>Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.</p> Signup and view all the answers

    What is the role of fibrinogen during platelet adhesion and what is platelet granule release?

    <p>Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.</p> Signup and view all the answers

    What events are required for the formation of the platelet plug?

    <p>The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.</p> Signup and view all the answers

    What are the major factors that regulate megakaryocyte and platelet development?

    <p>Thrombopoietin is the major humeral factor regulating megakaryocyte and platelet development.</p> Signup and view all the answers

    What is the structure of platelets and what are the zones of platelet ultra-structure?

    <p>Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells. The platelet ultra-structure is divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.</p> Signup and view all the answers

    What is the primary function of platelets in hemostasis?

    <p>To form an occlusive plug at damaged blood vessels</p> Signup and view all the answers

    What are the agonists that platelets have receptors for?

    <p>Collagen and von Willebrand factor</p> Signup and view all the answers

    What is the procoagulant action of platelets?

    <p>To activate factor X and thrombin</p> Signup and view all the answers

    What is the final step of coagulation?

    <p>Conversion of prothrombin to thrombin</p> Signup and view all the answers

    Which pathway of coagulation is activated by exposed collagen?

    <p>Intrinsic pathway</p> Signup and view all the answers

    What is the role of factor XIII in hemostasis?

    <p>To crosslink the fibrin polymer</p> Signup and view all the answers

    What laboratory test is used to evaluate the extrinsic pathway of coagulation?

    <p>Prothrombin time (PT)</p> Signup and view all the answers

    What is the role of tissue factor pathway inhibitor (TFPI) in hemostasis?

    <p>To inhibit the tissue factor pathway of coagulation</p> Signup and view all the answers

    What is the crucial protein in the initiation of blood coagulation?

    <p>Tissue factor</p> Signup and view all the answers

    What is the difference between the intrinsic and extrinsic pathways of coagulation?

    <p>The extrinsic pathway involves tissue factor complexing with factor VII, while the intrinsic pathway is activated by exposed collagen</p> Signup and view all the answers

    What is the function of proteins C and S in hemostasis?

    <p>To inactivate factors V and VIII</p> Signup and view all the answers

    What is the function of activated partial thromboplastin time (APTT) in laboratory studies of hemostasis?

    <p>To evaluate the intrinsic pathway of coagulation</p> Signup and view all the answers

    What is the role of platelets in hemostasis?

    <p>Platelets form an occlusive plug at the site of vascular injury.</p> Signup and view all the answers

    What are the agonists that platelets have receptors for?

    <p>Collagen and von Willebrand factor</p> Signup and view all the answers

    What is the procoagulant action of platelets?

    <p>Platelets accelerate the formation of factor Xa and thrombin.</p> Signup and view all the answers

    What is coagulation in hemostasis?

    <p>The conversion of fibrinogen to fibrin resulting in the formation of a stable hemostatic plug.</p> Signup and view all the answers

    What is the intrinsic pathway of coagulation activated by?

    <p>Exposed collagen</p> Signup and view all the answers

    What is the extrinsic pathway of coagulation activated by?

    <p>Tissue factor complexing with factor VII</p> Signup and view all the answers

    What is the final common pathway of coagulation?

    <p>Activated factor X converts prothrombin into thrombin, which converts fibrinogen to fibrin.</p> Signup and view all the answers

    What is the role of factor XIII in coagulation?

    <p>Factor XIII crosslinks the fibrin polymer to consolidate the thrombus.</p> Signup and view all the answers

    What laboratory tests are used to evaluate hemostasis?

    <p>Prothrombin time (PT) and activated partial thromboplastin time (APTT)</p> Signup and view all the answers

    What inhibitory systems modulate blood coagulation?

    <p>Anti-thrombin, proteins C and S, and tissue factor pathway inhibitor (TFPI)</p> Signup and view all the answers

    What is the crucial protein in the initiation of blood coagulation?

    <p>Tissue factor</p> Signup and view all the answers

    What is the activated partial thromboplastin time (APTT) used to evaluate?

    <p>The intrinsic pathway of coagulation</p> Signup and view all the answers

    What is the role of platelets in hemostasis?

    <p>To form a stable hemostatic plug</p> Signup and view all the answers

    What do platelets contain that aid in hemostasis?

    <p>Fibrinogen and ADP</p> Signup and view all the answers

    What is the procoagulant action of platelets?

    <p>Accelerating the formation of factor Xa and thrombin</p> Signup and view all the answers

    What is coagulation specifically responsible for?

    <p>The formation of a stable hemostatic plug</p> Signup and view all the answers

    What is the intrinsic pathway of coagulation activated by?

    <p>Exposed collagen</p> Signup and view all the answers

    What is the extrinsic pathway of coagulation activated by?

    <p>Tissue factor</p> Signup and view all the answers

    What is the final common pathway of coagulation responsible for?

    <p>Converting prothrombin into fibrin</p> Signup and view all the answers

    What is the role of factor XIII in hemostasis?

    <p>Crosslinking the fibrin polymer</p> Signup and view all the answers

    What laboratory tests are used to assess hemostasis?

    <p>PT and APTT</p> Signup and view all the answers

    What inhibitory systems modulate blood coagulation?

    <p>Proteins C and S</p> Signup and view all the answers

    What is the crucial protein in the initiation of blood coagulation?

    <p>Tissue factor</p> Signup and view all the answers

    What is the difference between the intrinsic and extrinsic pathways of coagulation?

    <p>The intrinsic pathway is activated by exposed collagen, while the extrinsic pathway involves tissue factor complexing with factor VII</p> Signup and view all the answers

    What is the role of platelets in hemostasis?

    <p>To form a stable hemostatic plug</p> Signup and view all the answers

    What are the agonists that platelets have receptors for?

    <p>Collagen and von Willebrand factor</p> Signup and view all the answers

    What happens when platelets are activated?

    <p>Consolidation of the thrombus by crosslinking the fibrin polymer</p> Signup and view all the answers

    What is the intrinsic pathway of coagulation activated by?

    <p>Exposed collagen</p> Signup and view all the answers

    What is the final common pathway in coagulation?

    <p>Conversion of fibrinogen to fibrin</p> Signup and view all the answers

    What are laboratory tests of hemostasis?

    <p>Activated partial thromboplastin time and prothrombin time</p> Signup and view all the answers

    What modulates blood coagulation?

    <p>Factor XIII, proteins C and S, and tissue factor pathway inhibitor (TFPI)</p> Signup and view all the answers

    What is the crucial protein in the initiation of blood coagulation?

    <p>Tissue factor</p> Signup and view all the answers

    What does coagulation refer specifically to in hemostasis?

    <p>Conversion of fibrinogen to fibrin</p> Signup and view all the answers

    What is the first step in platelet recruitment and activation?

    <p>Platelet adhesion</p> Signup and view all the answers

    What is the function of the GPIIb/IIIa complex in platelet activation?

    <p>It is a receptor for fibrinogen and vWF</p> Signup and view all the answers

    What is the lifespan of platelets?

    <p>Around 10 days</p> Signup and view all the answers

    What is the effect of platelet activation on the coagulation sequence?

    <p>It speeds up the coagulation sequence</p> Signup and view all the answers

    What do platelets secrete during activation?

    <p>Fibrinogen and thrombospondin</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>To transport and exchange respiratory gases</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Four globular protein subunits, each containing a heme group and a globin chain</p> Signup and view all the answers

    What is the predominant type of hemoglobin in adults?

    <p>HbA</p> Signup and view all the answers

    What is the iron-chelated porphyrin ring in hemoglobin that can carry one molecule of oxygen?

    <p>Heme</p> Signup and view all the answers

    What is the type of hemoglobin that occurs only in the embryonic stage?

    <p>HbGower-1</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c) used as an indicator of?

    <p>Blood glucose level in diabetic patients</p> Signup and view all the answers

    What is the effect of increased oxygen affinity on hemoglobin?

    <p>Hemoglobin does not give up its oxygen</p> Signup and view all the answers

    What is the hemoglobin concentration in the body a result of?

    <p>A balance between the production and destruction of erythrocytes</p> Signup and view all the answers

    What are abnormal hemoglobins?

    <p>Carboxyhemoglobin, methemoglobin, and sulfhemoglobin</p> Signup and view all the answers

    What is the primary function of hemoglobin?

    <p>To transport oxygen from the lungs to tissues and facilitate carbon dioxide transport from tissues to the lungs</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Four globular protein subunits, each containing a heme group and a globin chain</p> Signup and view all the answers

    What is the relationship between hemoglobin and erythrocytes?

    <p>Hemoglobin occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight</p> Signup and view all the answers

    What determines the type of hemoglobin?

    <p>The composition of its globin chains</p> Signup and view all the answers

    What is the function of glycosylated hemoglobin (HbA1c)?

    <p>It is used as an indicator of blood glucose level in diabetic patients</p> Signup and view all the answers

    What is the role of heme in hemoglobin?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron</p> Signup and view all the answers

    What is the difference between alpha-like and non-alpha-like globin chains?

    <p>The type of globin chain is responsible for the different functional and physical properties of hemoglobin</p> Signup and view all the answers

    What is the relationship between hemoglobin synthesis and erythrocyte development?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%</p> Signup and view all the answers

    What is the effect of increased oxygen affinity on hemoglobin?

    <p>Hemoglobin does not give up its oxygen</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>To transport and exchange respiratory gases</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Four globular protein subunits, each containing a heme group and a globin chain</p> Signup and view all the answers

    What is the predominant hemoglobin in adults?

    <p>HbA</p> Signup and view all the answers

    What is the iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron?

    <p>Heme</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c) used for in diabetic patients?

    <p>An indicator of blood glucose level</p> Signup and view all the answers

    What is the type of hemoglobin that is the predominant hemoglobin in the fetus and newborn?

    <p>HbF</p> Signup and view all the answers

    What is the molecule that hemoglobin can carry from tissues to the lungs?

    <p>Carbon dioxide</p> Signup and view all the answers

    What is the hemoglobin concentration in the body dependent on?

    <p>A balance between the production and destruction of erythrocytes</p> Signup and view all the answers

    What is the difference between alpha-like and non-alpha-like globin chains in hemoglobin?

    <p>The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>To transport and exchange respiratory gases</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>A tetrameric molecule with four globular protein subunits, each containing a heme group and a globin chain</p> Signup and view all the answers

    What is the predominant hemoglobin in adults?

    <p>HbA</p> Signup and view all the answers

    What is the iron-containing molecule in heme?

    <p>Porphyrin ring</p> Signup and view all the answers

    What is the function of glycosylated hemoglobin (HbA1c)?

    <p>Used as an indicator of blood glucose level in diabetic patients</p> Signup and view all the answers

    What is the oxygen carrying capacity of hemoglobin?

    <p>Each gram of hemoglobin can carry 1.34 ml of oxygen</p> Signup and view all the answers

    What is the type of hemoglobin that is predominant in the fetus and newborn?

    <p>HbF</p> Signup and view all the answers

    What is the role of alpha-like and non-alpha-like globin chains in hemoglobin?

    <p>Responsible for the different functional and physical properties of hemoglobin</p> Signup and view all the answers

    What is the molecule that can bind to the central ferrous iron in heme?

    <p>Oxygen</p> Signup and view all the answers

    What is the approximate volume of erythrocyte occupied by hemoglobin?

    <p>33%</p> Signup and view all the answers

    What are the abnormal hemoglobins mentioned in the text?

    <p>Carboxyhemoglobin, methemoglobin, and sulfhemoglobin</p> Signup and view all the answers

    What is the stage of erythrocyte development where most hemoglobin is synthesized?

    <p>Polychromatic stage</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>To transport and exchange respiratory gases</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Four globular protein subunits, each containing a heme group and a globin chain</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c) used for?

    <p>An indicator of blood glucose level in diabetic patients</p> Signup and view all the answers

    What is the iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron in heme called?

    <p>Heme</p> Signup and view all the answers

    What is the type of hemoglobin determined by?

    <p>The composition of its globin chains</p> Signup and view all the answers

    What is the effect of abnormal hemoglobins on oxygen transport and exchange?

    <p>Different effects depending on the type of abnormal hemoglobin</p> Signup and view all the answers

    What is the oxygen carrying capacity of each gram of hemoglobin?

    <p>1.34 ml</p> Signup and view all the answers

    What is the approximate volume of erythrocyte occupied by hemoglobin?

    <p>33%</p> Signup and view all the answers

    What is responsible for the different functional and physical properties of hemoglobin?

    <p>The composition of the globin chains</p> Signup and view all the answers

    What is the reticulocyte capable of producing in terms of hemoglobin synthesis?

    <p>The remaining 35%</p> Signup and view all the answers

    Is hemoglobin responsible for transporting oxygen and facilitating carbon dioxide transport?

    <p>True</p> Signup and view all the answers

    Can each gram of hemoglobin carry up to 1.34 ml of oxygen?

    <p>True</p> Signup and view all the answers

    Does hemoglobin occupy approximately 33% of the volume of the erythrocyte and account for 90% of the cell dry weight?

    <p>True</p> Signup and view all the answers

    Does hemoglobin concentration in the body result from a balance between the production and destruction of erythrocytes?

    <p>True</p> Signup and view all the answers

    Is hemoglobin a tetrameric molecule composed of four globular protein subunits?

    <p>True</p> Signup and view all the answers

    Does each hemoglobin contain four heme groups?

    <p>False</p> Signup and view all the answers

    Is the composition of the globin chains responsible for the different functional and physical properties of hemoglobin?

    <p>True</p> Signup and view all the answers

    Is HbA the major hemoglobin in adults?

    <p>True</p> Signup and view all the answers

    Is HbA1c used as an indicator of blood glucose level in diabetic patients?

    <p>True</p> Signup and view all the answers

    Is most hemoglobin synthesized in the polychromatic stage?

    <p>True</p> Signup and view all the answers

    Do abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin?

    <p>True</p> Signup and view all the answers

    Does increased oxygen affinity mean hemoglobin releases its oxygen more readily?

    <p>False</p> Signup and view all the answers

    Each gram of hemoglobin can carry 1.34 ml of oxygen.

    <p>True</p> Signup and view all the answers

    Hemoglobin accounts for 90% of the cell dry weight.

    <p>True</p> Signup and view all the answers

    Hemoglobin concentration in the body is solely determined by the production of erythrocytes.

    <p>False</p> Signup and view all the answers

    Hemoglobin is a tetrameric molecule composed of four protein subunits.

    <p>True</p> Signup and view all the answers

    Heme is a form of iron that can carry four molecules of oxygen.

    <p>False</p> Signup and view all the answers

    The type of hemoglobin is determined by the composition of its globin chains.

    <p>True</p> Signup and view all the answers

    Glycosylated hemoglobin (HbA1c) is only produced in diabetic patients.

    <p>False</p> Signup and view all the answers

    Most hemoglobin is synthesized in the polychromatic stage.

    <p>True</p> Signup and view all the answers

    Abnormal hemoglobins have no effect on oxygen transport and exchange.

    <p>False</p> Signup and view all the answers

    The primary function of hemoglobin is to transport and exchange respiratory gases.

    <p>True</p> Signup and view all the answers

    Increased oxygen affinity means hemoglobin releases oxygen more readily.

    <p>False</p> Signup and view all the answers

    Hemoglobin synthesis begins in the orthochromatic stage.

    <p>False</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the structure of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is the composition of globin chains in hemoglobin?

    <p>The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What is the role of heme in hemoglobin?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c)?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    What is the process of hemoglobin synthesis?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.</p> Signup and view all the answers

    What are abnormal hemoglobins?

    <p>Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What is the effect of increased oxygen affinity on hemoglobin?

    <p>Increased oxygen affinity means hemoglobin does not give up its oxygen.</p> Signup and view all the answers

    What is the effect of decreased oxygen affinity on hemoglobin?

    <p>Decreased oxygen affinity means hemoglobin releases its oxygen more readily.</p> Signup and view all the answers

    What is the volume of erythrocyte occupied by hemoglobin?

    <p>Hemoglobin occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>Hemoglobin's function is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is heme?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the two types of globin chains that make up hemoglobin?

    <p>The two types of globin chains that make up hemoglobin are alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>The predominant hemoglobin in the fetus and newborn is HbF.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>The major hemoglobin in adults is HbA.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c)?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    What is the percentage of the volume of the erythrocyte occupied by hemoglobin?

    <p>Hemoglobin occupies approximately 33% of the volume of the erythrocyte.</p> Signup and view all the answers

    What is the percentage of the cell dry weight accounted for by hemoglobin?

    <p>Hemoglobin accounts for 90% of the cell dry weight.</p> Signup and view all the answers

    What are abnormal hemoglobins?

    <p>Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What is the oxygen-carrying capacity of each gram of hemoglobin?

    <p>Each gram of hemoglobin can carry 1.34 ml of oxygen.</p> Signup and view all the answers

    When does hemoglobin synthesis begin and which stage produces the most hemoglobin?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage.</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the structure of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is heme?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the types of globin chains?

    <p>There are two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What determines the different functional and physical properties of hemoglobin?

    <p>The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin.</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c)?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    When does hemoglobin synthesis begin?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage.</p> Signup and view all the answers

    Where is most hemoglobin synthesized?

    <p>Most hemoglobin is synthesized in the polychromatic stage.</p> Signup and view all the answers

    What is the reticulocyte capable of producing?

    <p>The reticulocyte is capable of producing the remaining 35% of hemoglobin.</p> Signup and view all the answers

    What are the different types of abnormal hemoglobins?

    <p>The different types of abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin.</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>Hemoglobin transports and exchanges respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is hemoglobin made of?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is heme?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    How many types of globin chains are there?

    <p>There are two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What determines the type of hemoglobin?

    <p>The type of hemoglobin is determined by the composition of its globin chains.</p> Signup and view all the answers

    What is HbA1c and what is its importance?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What are abnormal hemoglobins and what are their effects?

    <p>Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What is the oxygen-carrying capacity of each gram of hemoglobin?

    <p>Each gram of hemoglobin can carry 1.34 ml of oxygen.</p> Signup and view all the answers

    What is the volume occupancy of hemoglobin in erythrocytes?

    <p>Hemoglobin occupies approximately 33% of the volume of the erythrocyte.</p> Signup and view all the answers

    What is the dry weight contribution of hemoglobin in erythrocytes?

    <p>Hemoglobin accounts for 90% of the cell dry weight in erythrocytes.</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the structure of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is heme?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the two types of globin chains in hemoglobin?

    <p>The two types of globin chains in hemoglobin are alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c)?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    When does hemoglobin synthesis begin?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage.</p> Signup and view all the answers

    Where is most hemoglobin synthesized?

    <p>Most hemoglobin is synthesized in the polychromatic stage.</p> Signup and view all the answers

    What is the function of reticulocytes in hemoglobin synthesis?

    <p>The reticulocyte is capable of producing the remaining 35% of hemoglobin.</p> Signup and view all the answers

    What are abnormal hemoglobins?

    <p>Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What does increased oxygen affinity mean for hemoglobin?

    <p>Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.</p> Signup and view all the answers

    What is the function of hemoglobin in the body?

    <p>Hemoglobin functions to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is the role of heme in hemoglobin?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the two types of globin chains in hemoglobin?

    <p>The two types of globin chains in hemoglobin are alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c) and what is its significance?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    At what stage does hemoglobin synthesis begin and where is most hemoglobin synthesized?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage.</p> Signup and view all the answers

    What is the function of reticulocytes in hemoglobin synthesis?

    <p>The reticulocyte is capable of producing the remaining 35% of hemoglobin.</p> Signup and view all the answers

    What are some examples of abnormal hemoglobins?

    <p>Examples of abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin.</p> Signup and view all the answers

    What determines the type of hemoglobin in the body?

    <p>The type of hemoglobin is determined by the composition of its globin chains.</p> Signup and view all the answers

    What is the significance of oxygen affinity in hemoglobin?

    <p>The oxygen affinity determines the ease with which hemoglobin binds and releases oxygen, with increased oxygen affinity meaning hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.</p> Signup and view all the answers

    What is the function of hemoglobin and what gases does it transport?

    <p>Hemoglobin transports oxygen from the lungs to tissues and facilitates carbon dioxide transport from tissues to the lungs.</p> Signup and view all the answers

    What is the structure of hemoglobin and what is its composition?

    <p>Hemoglobin is a tetrameric molecule composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is the role of heme in hemoglobin and how many oxygen molecules can each hemoglobin carry?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the two types of globin chains in hemoglobin and what are their functional and physical properties?

    <p>The two types of globin chains are alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma). The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin.</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn and what is the major hemoglobin in adults?

    <p>HbF is the predominant hemoglobin in the fetus and newborn, while HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c) and what is its use in diabetic patients?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    What is the process of hemoglobin synthesis and in which stages of erythrocyte development does it occur?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.</p> Signup and view all the answers

    What are the abnormal hemoglobins and what are their effects on oxygen transport and exchange?

    <p>Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What is oxygen affinity in hemoglobin and how does it affect oxygen binding and release?

    <p>Oxygen affinity determines the ease with which hemoglobin binds and releases oxygen. Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.</p> Signup and view all the answers

    What is the balance that determines hemoglobin concentration in the body?

    <p>Hemoglobin concentration in the body results from a balance between the production and destruction of erythrocytes.</p> Signup and view all the answers

    What is the volume of the erythrocyte that hemoglobin occupies and what is its dry weight contribution?

    <p>Hemoglobin occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.</p> Signup and view all the answers

    What is the amount of oxygen that each gram of hemoglobin can carry?

    <p>Each gram of hemoglobin can carry 1.34 ml of oxygen.</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>Hemoglobin's function is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the structure of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is heme?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the two types of globin chains present in hemoglobin?

    <p>The two types of globin chains present in hemoglobin are alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c)?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    When does hemoglobin synthesis begin?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage.</p> Signup and view all the answers

    When is most hemoglobin synthesized?

    <p>Most hemoglobin is synthesized in the polychromatic stage.</p> Signup and view all the answers

    What is the remaining 35% of hemoglobin synthesized by?

    <p>The reticulocyte is capable of producing the remaining 35% of hemoglobin.</p> Signup and view all the answers

    What are some abnormal hemoglobins and their effects on oxygen transport and exchange?

    <p>Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What happens when hemoglobin has increased oxygen affinity?

    <p>Increased oxygen affinity means hemoglobin does not give up its oxygen.</p> Signup and view all the answers

    What is the function of hemoglobin?

    <p>Hemoglobin transports and exchanges respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What is the composition of hemoglobin?

    <p>Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.</p> Signup and view all the answers

    What is the role of heme in hemoglobin?

    <p>Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.</p> Signup and view all the answers

    What are the two types of globin chains in hemoglobin?

    <p>The two types of globin chains in hemoglobin are alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).</p> Signup and view all the answers

    What is the predominant hemoglobin in the fetus and newborn?

    <p>HbF is the predominant hemoglobin in the fetus and newborn.</p> Signup and view all the answers

    What is the major hemoglobin in adults?

    <p>HbA is the major hemoglobin in adults.</p> Signup and view all the answers

    What is glycosylated hemoglobin (HbA1c)?

    <p>Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.</p> Signup and view all the answers

    When does hemoglobin synthesis begin?

    <p>Hemoglobin synthesis begins as early as the pronormoblast stage.</p> Signup and view all the answers

    When is most hemoglobin synthesized?

    <p>Most hemoglobin is synthesized in the polychromatic stage.</p> Signup and view all the answers

    What is abnormal hemoglobin?

    <p>Abnormal hemoglobin includes carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.</p> Signup and view all the answers

    What is the oxygen affinity of hemoglobin?

    <p>The oxygen affinity of hemoglobin determines the ease with which hemoglobin binds and releases oxygen.</p> Signup and view all the answers

    What happens when the oxygen affinity of hemoglobin increases?

    <p>When the oxygen affinity of hemoglobin increases, it does not give up its oxygen easily.</p> Signup and view all the answers

    Hemoglobin can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry ______ molecules of oxygen.

    <p>four</p> Signup and view all the answers

    The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the ______ stage.

    <p>embryonic</p> Signup and view all the answers

    HbF is the predominant hemoglobin in the ______ and newborn.

    <p>fetus</p> Signup and view all the answers

    HbA is the major hemoglobin in ______.

    <p>adults</p> Signup and view all the answers

    Glycosylated hemoglobin (HbA1c) is used as an indicator of ______ level in diabetic patients.

    <p>blood glucose</p> Signup and view all the answers

    Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and ______, with different causes and effects on oxygen transport and exchange.

    <p>sulfhemoglobin</p> Signup and view all the answers

    Hemoglobin synthesis begins as early as the ______ stage.

    <p>pronormoblast</p> Signup and view all the answers

    The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases ______.

    <p>oxygen</p> Signup and view all the answers

    Increased oxygen affinity means hemoglobin does not give up its ______.

    <p>oxygen</p> Signup and view all the answers

    Decreased oxygen affinity means hemoglobin releases its ______ more readily.

    <p>oxygen</p> Signup and view all the answers

    Each gram of hemoglobin can carry 1.34 ml of ______.

    <p>oxygen</p> Signup and view all the answers

    Hemoglobin concentration in the body results from a balance between the production and destruction of ______.

    <p>erythrocytes</p> Signup and view all the answers

    Hemoglobin is responsible for transporting ______ from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs

    <p>oxygen</p> Signup and view all the answers

    Each gram of hemoglobin can carry 1.34 ______ of oxygen

    <p>ml</p> Signup and view all the answers

    Hemoglobin concentration in the body results from a balance between the ______ and destruction of erythrocytes

    <p>production</p> Signup and view all the answers

    Hemoglobin is a ______ molecule, composed of four globular protein subunits, each containing a heme group and a globin chain

    <p>tetrameric</p> Signup and view all the answers

    Heme is an iron-chelated ______ ring that can carry one molecule of oxygen bound to the central ferrous iron

    <p>porphyrin</p> Signup and view all the answers

    The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and ______)

    <p>gamma</p> Signup and view all the answers

    The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the embryonic stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in ______

    <p>adults</p> Signup and view all the answers

    Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of ______ level in diabetic patients

    <p>blood glucose</p> Signup and view all the answers

    Hemoglobin synthesis begins as early as the ______ stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%

    <p>pronormoblast</p> Signup and view all the answers

    Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and ______, with different causes and effects on oxygen transport and exchange

    <p>sulfhemoglobin</p> Signup and view all the answers

    The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and ______ oxygen

    <p>releases</p> Signup and view all the answers

    Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more ______

    <p>readily</p> Signup and view all the answers

    • Hemoglobin is a specialized protein responsible for transporting ______ from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs.

    <p>oxygen</p> Signup and view all the answers

    • Each gram of hemoglobin can carry ______ ml of oxygen, and it occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.

    <p>1.34</p> Signup and view all the answers

    • Hemoglobin concentration in the body results from a balance between the production and destruction of ______.

    <p>erythrocytes</p> Signup and view all the answers

    • Hemoglobin is a ______ molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.

    <p>tetrameric</p> Signup and view all the answers

    • Heme is an ______-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.

    <p>iron</p> Signup and view all the answers

    • The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the ______ stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in adults.

    <p>embryonic</p> Signup and view all the answers

    • Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood ______ level in diabetic patients.

    <p>glucose</p> Signup and view all the answers

    • Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the ______ stage, and the reticulocyte capable of producing the remaining 35%.

    <p>polychromatic</p> Signup and view all the answers

    • Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and ______ with different causes and effects on oxygen transport and exchange.

    <p>sulfhemoglobin</p> Signup and view all the answers

    • The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases ______.

    <p>oxygen</p> Signup and view all the answers

    • Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more ______.

    <p>readily</p> Signup and view all the answers

    • The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and ______-like (epsilon, beta, delta, and gamma).

    <p>non-alpha</p> Signup and view all the answers

    Study Notes

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Platelet Disorders and Inherited Coagulation Disorders

    • Platelets are produced by fragmentation of megakaryocyte cytoplasm in the bone marrow.
    • Primary thrombocytosis is an uncontrolled, malignant proliferation of platelets, not in response to thrombopoietin, and can be caused by essential thrombocythemia, polycythemia vera, and chronic myelocytic leukemia.
    • Platelet counts can be >1000 X 10 /L in primary thrombocytosis, and it can be associated with hemorrhagic or thrombotic complications.
    • Secondary thrombocytosis is characterized by increased platelet production, usually in response to thrombopoietin, and platelet count is elevated, but usually < 1000 X 10 /L.
    • Thrombocytopenia is characterized by a platelet count below 100 x 10 /L and can result in abnormal bleeding associated with thrombocytopenia or abnormal platelet function.
    • Common platelet disorders include decreased production due to aplastic anemia or tumors and increased destruction due to immune thrombocytopenia, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, or hypersplenism.
    • Hereditary platelet function disorders include deficiency of membrane GPIIb, deficiency of GPIb, and absence of α. granules or dense granules.
    • Acquired platelet function disorders include antiplatelet drugs, hyperglobulinemia associated with multiple myeloma, myeloproliferative disorders, and uremia in renal failure.
    • Hemophilia A is an X-linked recessive condition resulting from a deficiency of factor VIII, and it predominately affects males with symptoms varying depending on the degree of deficiency.
    • Hemophilia A laboratory studies show normal platelet count, normal bleeding time, normal PT, and prolonged PTT, and treatment is factor VIII concentrate.
    • Von Willebrand disease is an autosomal dominant bleeding disorder characterized by a deficiency or qualitative defect in von Willebrand factor, and clinical features include spontaneous bleeding from mucous membranes, prolonged bleeding from wounds, and menorrhagia in young females.
    • Acquired coagulopathies include vitamin K deficiency and liver disease, while DIC causes widespread microthrombi with the consumption of platelets and clotting factors, causing hemorrhage, and laboratory studies show decreased platelet count, prolonged PT/PTT, decreased fibrinogen, and elevated fibrin split products (D.dimers).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Hemostasis and Coagulation Mechanism

    • Hemostasis involves two stages: primary and secondary.
    • Primary hemostasis involves the formation of an unstable platelet plug.
    • Secondary hemostasis involves the reinforcement of the platelet plug by transforming soluble fibrinogen into insoluble fibrin.
    • Coagulation mechanism involves intrinsic pathways, extrinsic pathways, and common pathways.
    • Coagulation proteins are divided into three groups: prothrombin group, fibrinogen group, and contact group.
    • Prothrombin group contains vitamin K dependent coagulation factors II, VII, IX, and X.
    • Fibrinogen group contains coagulation factors I, V, VIII, and XIII.
    • Contact group includes coagulation factors XI, XII, PK, and HK and is involved in the initial activation of the intrinsic pathway and fibrinolysis.
    • Most coagulation reactions occur on the surface membrane of activated platelets.
    • Fibrinolysis is the process of removing fibrin and is initiated when clotting begins.
    • The erythrocyte indices help classify erythrocytes based on their size and hemoglobin content.
    • The three indices used to classify anemia are mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    Overview of Platelets and Primary Hemostasis

    • Platelets are the smallest circulating hematological elements, derived from precursor cells in the bone marrow called Megakaryocyte.
    • Platelets are membrane-bound anucleate fragments of cytoplasm of megakaryocyte, not truly cells.
    • Several cytokines and growth factors affect megakaryocyte development, and the major humeral factor regulating megakaryocyte and platelet development is thrombopoietin.
    • The platelet ultra-structure divided into four zones: peripheral zone, structural zone, organelle zone, and membrane system.
    • Platelets maintain blood vessel integrity, aid in healing injured tissue, and interact with other platelets and coagulation proteins to form primary and secondary hemostatic plugs.
    • Hemostasis is the result of the interaction between the blood vessel, platelets, and coagulation proteins.
    • Primary hemostasis, secondary hemostasis, and fibrinolysis are the three phases of hemostasis.
    • Platelet adhesion to sub-endothelium is the first stimulation for platelet activation.
    • Platelet activation includes changes in metabolic biochemistry, morphology, surface receptor, and membrane phospholipid.
    • Platelet shape changes from disc-shaped to spiny spheres with pseudopods, and aggregation is the joining of platelets together.
    • Fibrinogen connects two platelets during platelet adhesion, and platelet granule release facilitates platelet granule release into surrounding tissues, activating platelets.
    • The formation of the platelet plug requires several activation events, including adhesion, shape change, secretion, and aggregation.

    The Role of Platelets and Coagulation in Hemostasis

    • Platelets are recruited to damaged blood vessels to form an occlusive plug.
    • Platelets have receptors for agonists like collagen and von Willebrand factor, and contain organelles with proteins like fibrinogen and small molecules like ADP.
    • Platelet activation leads to aggregation, adhesion, and promotion of further activation.
    • Platelets also have a procoagulant action, accelerating the formation of factor Xa and thrombin.
    • Coagulation refers specifically to the conversion of fibrinogen to fibrin, resulting in the formation of a stable hemostatic plug.
    • Coagulation involves a complex biochemical cascade of proteolytic enzymes (serine proteases) and cofactors.
    • The intrinsic pathway is activated by exposed collagen, while the extrinsic pathway involves tissue factor complexing with factor VII.
    • Both pathways terminate in the final common pathway where activated factor X converts prothrombin into thrombin, which converts fibrinogen to fibrin.
    • Factor XIII crosslinks the fibrin polymer to consolidate the thrombus.
    • Laboratory tests of hemostasis include the prothrombin time (PT) and activated partial thromboplastin time (APTT).
    • Blood coagulation is modulated by inhibitory systems like anti-thrombin, proteins C and S, and tissue factor pathway inhibitor (TFPI).
    • Tissue factor is the crucial protein in the initiation of blood coagulation and activates both the extrinsic and intrinsic pathways.

    The Role of Platelets and Coagulation in Hemostasis

    • Platelets are recruited to damaged blood vessels to form an occlusive plug.
    • Platelets have receptors for agonists like collagen and von Willebrand factor, and contain organelles with proteins like fibrinogen and small molecules like ADP.
    • Platelet activation leads to aggregation, adhesion, and promotion of further activation.
    • Platelets also have a procoagulant action, accelerating the formation of factor Xa and thrombin.
    • Coagulation refers specifically to the conversion of fibrinogen to fibrin, resulting in the formation of a stable hemostatic plug.
    • Coagulation involves a complex biochemical cascade of proteolytic enzymes (serine proteases) and cofactors.
    • The intrinsic pathway is activated by exposed collagen, while the extrinsic pathway involves tissue factor complexing with factor VII.
    • Both pathways terminate in the final common pathway where activated factor X converts prothrombin into thrombin, which converts fibrinogen to fibrin.
    • Factor XIII crosslinks the fibrin polymer to consolidate the thrombus.
    • Laboratory tests of hemostasis include the prothrombin time (PT) and activated partial thromboplastin time (APTT).
    • Blood coagulation is modulated by inhibitory systems like anti-thrombin, proteins C and S, and tissue factor pathway inhibitor (TFPI).
    • Tissue factor is the crucial protein in the initiation of blood coagulation and activates both the extrinsic and intrinsic pathways.

    Hemoglobin: Structure, Types, Synthesis, and Function

    • Hemoglobin is a specialized protein responsible for transporting oxygen from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs.
    • Each gram of hemoglobin can carry 1.34 ml of oxygen, and it occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.
    • Hemoglobin concentration in the body results from a balance between the production and destruction of erythrocytes.
    • Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.
    • Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.
    • The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).
    • The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the embryonic stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in adults.
    • Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.
    • Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.
    • Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.
    • The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.
    • Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.

    Hemoglobin: Structure, Types, Synthesis, and Function

    • Hemoglobin is a specialized protein responsible for transporting oxygen from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs.
    • Each gram of hemoglobin can carry 1.34 ml of oxygen, and it occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.
    • Hemoglobin concentration in the body results from a balance between the production and destruction of erythrocytes.
    • Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.
    • Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.
    • The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).
    • The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the embryonic stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in adults.
    • Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.
    • Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.
    • Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.
    • The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.
    • Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.

    Hemoglobin: Structure, Types, Synthesis, and Function

    • Hemoglobin is a specialized protein responsible for transporting oxygen from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs.
    • Each gram of hemoglobin can carry 1.34 ml of oxygen, and it occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.
    • Hemoglobin concentration in the body results from a balance between the production and destruction of erythrocytes.
    • Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.
    • Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.
    • The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).
    • The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the embryonic stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in adults.
    • Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.
    • Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.
    • Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.
    • The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.
    • Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.

    Hemoglobin: Structure, Types, Synthesis, and Function

    • Hemoglobin is a specialized protein responsible for transporting oxygen from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs.
    • Each gram of hemoglobin can carry 1.34 ml of oxygen, and it occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.
    • Hemoglobin concentration in the body results from a balance between the production and destruction of erythrocytes.
    • Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.
    • Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.
    • The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).
    • The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the embryonic stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in adults.
    • Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.
    • Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.
    • Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.
    • The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.
    • Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.

    Hemoglobin: Structure, Types, Synthesis, and Function

    • Hemoglobin is a specialized protein responsible for transporting oxygen from the lungs to tissues and facilitating carbon dioxide transport from tissues to the lungs.
    • Each gram of hemoglobin can carry 1.34 ml of oxygen, and it occupies approximately 33% of the volume of the erythrocyte and accounts for 90% of the cell dry weight.
    • Hemoglobin concentration in the body results from a balance between the production and destruction of erythrocytes.
    • Hemoglobin is a tetrameric molecule, composed of four globular protein subunits, each containing a heme group and a globin chain.
    • Heme is an iron-chelated porphyrin ring that can carry one molecule of oxygen bound to the central ferrous iron, and each hemoglobin can carry four molecules of oxygen.
    • The composition of the globin chains is responsible for the different functional and physical properties of hemoglobin, with two types of globin chains: alpha-like (alpha, zeta) and non-alpha-like (epsilon, beta, delta, and gamma).
    • The type of hemoglobin is determined by the composition of its globin chains, with some hemoglobins occurring only in the embryonic stage, HbF being the predominant hemoglobin in the fetus and newborn, and HbA being the major hemoglobin in adults.
    • Glycosylated hemoglobin (HbA1c) is produced throughout the erythrocyte life cycle and used as an indicator of blood glucose level in diabetic patients.
    • Hemoglobin synthesis begins as early as the pronormoblast stage, with most hemoglobin synthesized in the polychromatic stage, and the reticulocyte capable of producing the remaining 35%.
    • Abnormal hemoglobins include carboxyhemoglobin, methemoglobin, and sulfhemoglobin, with different causes and effects on oxygen transport and exchange.
    • The function of hemoglobin is to transport and exchange respiratory gases, with oxygen affinity determining the ease with which hemoglobin binds and releases oxygen.
    • Increased oxygen affinity means hemoglobin does not give up its oxygen, while decreased oxygen affinity means hemoglobin releases its oxygen more readily.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your knowledge on platelet disorders and inherited coagulation disorders with this informative quiz. From primary and secondary thrombocytosis to hereditary and acquired platelet function disorders, this quiz covers a range of important topics. You'll also learn about Hemophilia A, Von Willebrand disease, and acquired coagulopathies like vitamin K deficiency and liver disease. So, if you're interested in understanding more about the causes, symptoms, and treatment of these disorders, take this quiz

    More Like This

    Use Quizgecko on...
    Browser
    Browser